Identification of aquifer parameters using improved decimal-coded genetic algorithm

被引:0
|
作者
Lei, H. W. [1 ]
Tang, Z. H. [1 ]
Yang, Y. L. [1 ]
机构
[1] China Univ Geosci, Sch Environm Studies, Wuhan 430074, Peoples R China
关键词
CLEANUP SYSTEMS; OPTIMAL-DESIGN; MODELS; NETWORKS;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The aquifer parameters are playing an important role in the evaluation and management of groundwater. So identifying those parameters quickly and accurately. is acquired. Aiming at the decimal-coded genetic algorithm's shortcoming-slow convergence speed, easy to get in local optimized solution and so on, we develop a comprehensive improved genetic algorithm to identify the aquifer parameters. A practice model in which the boundary head is constant and a pumping well is located at the center indicates that the improved genetic algorithm is better than the decimal-coded genetic algorithm.
引用
收藏
页码:35 / 38
页数:4
相关论文
共 50 条
  • [31] Tuning of the structure and parameters of a neural network using an improved genetic algorithm
    Leung, FHF
    Lam, HK
    Ling, SH
    Tam, PKS
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (01): : 79 - 88
  • [32] Parameters identification of photovoltaic models using an improved JAYA optimization algorithm
    Yu, Kunjie
    Liang, J. J.
    Qu, B. Y.
    Chen, Xu
    Wang, Heshan
    ENERGY CONVERSION AND MANAGEMENT, 2017, 150 : 742 - 753
  • [33] Identification of Optimal Parameters for a Small-Scale Compressed-Air Energy Storage System Using Real Coded Genetic Algorithm
    Guewouo, Thomas
    Luo, Lingai
    Tarlet, Dominique
    Tazerout, Mohand
    ENERGIES, 2019, 12 (03)
  • [34] Parameters Optimization of a Counter-Current Cascade Based on Using a Real Coded Genetic Algorithm
    Norouzi, A.
    Minuchehr, A. H.
    Zolfaghari, A.
    Hagighattalab, A.
    SEPARATION SCIENCE AND TECHNOLOGY, 2011, 46 (14) : 2223 - 2230
  • [35] Structural damage identification for elements and connections using an improved genetic algorithm
    Ramezani, Meysam
    Bahar, Omid
    SMART STRUCTURES AND SYSTEMS, 2021, 28 (05) : 643 - 660
  • [36] Selection of sand models and identification of parameters using an enhanced genetic algorithm
    Jin, Yin-Fu
    Yin, Zhen-Yu
    Shen, Shui-Long
    Hicher, Pierre-Yves
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2016, 40 (08) : 1219 - 1240
  • [37] Identification of material parameters using finite element and micro genetic algorithm
    Gao, Hui
    Han, Lifen
    Li, Guangyao
    Han, Xu
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2005, 16 (18): : 1678 - 1681
  • [38] Identification of induction machine parameters using a new adaptive genetic algorithm
    Abdelhadi, B
    Benoudjit, A
    Said, NN
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2004, 32 (08) : 767 - 784
  • [39] Fuzzy Hammerstein model and its parameters identification using genetic algorithm
    Liutkevicius, Raimundas
    Dainys, Saulius
    Electrical and Control Technologies, Proceedings, 2006, : 195 - 200
  • [40] Analysis on parameters in an improved quantum genetic algorithm
    Jiang, Shujuan
    Zhou, Qi
    Zhang, Yanmei
    International Journal of Digital Content Technology and its Applications, 2012, 6 (18) : 176 - 184