Structural and optical properties of ZnMgO thin films grown by pulsed laser deposition using ZnO-MgO multiple targets

被引:10
作者
Maemoto, Toshihiko [1 ]
Ichiba, Nobuyasu [1 ]
Ishii, Hiroaki [1 ]
Sasa, Shigehiko [1 ]
Inoue, Masataka [1 ]
机构
[1] Osaka Inst Technol, Nanomaterials Microdevices Res Ctr, Asahi Ku, 5-16-1, Osaka 5358585, Japan
来源
COLA'05: 8TH INTERNATIONAL CONFERENCE ON LASER ABLATION | 2007年 / 59卷
关键词
D O I
10.1088/1742-6596/59/1/141
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on structural and optical properties for Zn1-xMgxO (ZMO) thin films produced by pulsed laser ablation. ZMO thin films were grown on a-plane Al2O3 substrates at 400 degrees C. In order to efficiently incorporate Mg into ZnO thin films, we used multiple ZnO-MgO ablation targets. Pulses from a Nd:YAG laser (4th harmonic generation: 266 nm) were directed on the ZnO-MgO ablation targets, which consisted of MgO single crystals mounted on ZnO ceramic targets. The ZMO films were characterized by x-ray diffraction, optical transmittance and cathodeluminescence (CL) measurements. Highly c-axis oriented ZMO(0002) reflections corresponding to the wurtzite-phase were observed. The c-axis lattice constants of the films were determined from the ZnMgO(0002) peak. The c-axis length of the ZMO films decreased linearly with Mg content. From the optical transmittance spectra of ZMO films, we observed a blue shift in the absorption edge with increasing Mg content. Band gap energies of ZMO thin films were determined from the optical transmittance and CL spectra. We found that the band gap energy changed from 3.27 eV to 3.95 eV. The Mg content of ZMO films increased monotonically with the number of laser pulses which struck the MgO target. These results show that laser ablation using multiple targets of ZnO and MgO is effective for band engineering of ZMO.
引用
收藏
页码:670 / +
页数:2
相关论文
共 15 条
[1]   Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers [J].
Ashrafi, ABMA ;
Ueta, A ;
Avramescu, A ;
Kumano, H ;
Suemune, I ;
Ok, YW ;
Seong, TY .
APPLIED PHYSICS LETTERS, 2000, 76 (05) :550-552
[2]   Optically pumped lasing of ZnO at room temperature [J].
Bagnall, DM ;
Chen, YF ;
Zhu, Z ;
Yao, T ;
Koyama, S ;
Shen, MY ;
Goto, T .
APPLIED PHYSICS LETTERS, 1997, 70 (17) :2230-2232
[3]   Fabrication of stable wide-band-gap ZnO/MgO multilayer thin films [J].
Bhattacharya, P ;
Das, RR ;
Katiyar, RS .
APPLIED PHYSICS LETTERS, 2003, 83 (10) :2010-2012
[4]   Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films [J].
Choopun, S ;
Vispute, RD ;
Yang, W ;
Sharma, RP ;
Venkatesan, T ;
Shen, H .
APPLIED PHYSICS LETTERS, 2002, 80 (09) :1529-1531
[5]   Uniaxial locked growth of high-quality epitaxial ZnO films on (11(2)over-bar-0)α-Al2O3 [J].
Fons, P ;
Iwata, K ;
Niki, S ;
Yamada, A ;
Matsubara, K ;
Watanabe, M .
JOURNAL OF CRYSTAL GROWTH, 2000, 209 (2-3) :532-536
[6]   Recent advances in ZnO materials and devices [J].
Look, DC .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 80 (1-3) :383-387
[7]   Growth of ZnO/Zn1-xMgxO films by pulsed laser ablation [J].
Maemoto, T ;
Ichiba, N ;
Sasa, S ;
Inoue, M .
THIN SOLID FILMS, 2005, 486 (1-2) :174-177
[8]   Combinatorial laser molecular beam epitaxy (MBE) growth of Mg-Zn-O alloy for band gap engineering [J].
Matsumoto, Y ;
Murakami, M ;
Jin, ZW ;
Ohtomo, A ;
Lippmaa, M ;
Kawasaki, M ;
Koinuma, H .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1999, 38 (6AB) :L603-L605
[9]   Preparation of Zn1-xMgxO films by radio frequency magnetron sputtering [J].
Minemoto, T ;
Negami, T ;
Nishiwaki, S ;
Takakura, H ;
Hamakawa, Y .
THIN SOLID FILMS, 2000, 372 (1-2) :173-176
[10]   High mobility thin film transistors with transparent ZnO channels [J].
Nishii, J ;
Hossain, FM ;
Takagi, S ;
Aita, T ;
Saikusa, K ;
Ohmaki, Y ;
Ohkubo, I ;
Kishimoto, S ;
Ohtomo, A ;
Fukumura, T ;
Matsukura, F ;
Ohno, Y ;
Koinuma, H ;
Ohno, H ;
Kawasaki, M .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2003, 42 (4A) :L347-L349