Imaging characterization techniques applied to Cu(In,Ga)Se2 solar cells

被引:22
作者
Johnston, Steve [1 ]
Unold, Thomas [2 ]
Repins, Ingrid [1 ]
Sundaramoorthy, Rajalakshmi [1 ]
Jones, Kim M. [1 ]
To, Bobby [1 ]
Call, Nathan [1 ,3 ]
Ahrenkiel, Richard [1 ,3 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany
[3] Colorado Sch Mines, Golden, CO 80401 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 2010年 / 28卷 / 04期
关键词
LOCK-IN THERMOGRAPHY; MULTICRYSTALLINE SILICON; WAFERS; SHUNTS;
D O I
10.1116/1.3358303
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The authors present examples of imaging characterization on Cu(In,Ga)Se-2 (CIGS) solar cell devices. These imaging techniques include photoluminescence imaging, electroluminescence imaging, illuminated lock-in thermography, and forward- and reverse-bias dark lock-in thermographies. Images were collected on CIGS devices deposited at the National Renewable Energy Laboratory with intentional spatial inhomogeneities of the material parameters. Photoluminescence imaging shows brightness variations, which correlate to the device open-circuit voltage. Photoluminescence and electroluminescence imaging on CIGS solar cells show dark spots that correspond to bright spots on images from illuminated and forward-bias lock-in thermography. These image-detected defect areas are weak diodes that conduct current under solar cell operating conditions. Shunt defects are imaged using reverse-bias lock-in thermography. The authors show how imaging can be used to detect structural defects detrimental to solar cell performance. The images provide defect locations that are analyzed in more detail by scanning electron microscopy techniques using top view and cross section imaging. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3358303]
引用
收藏
页码:665 / 670
页数:6
相关论文
共 17 条
[1]   Material-induced shunts in multicrystalline silicon solar cells [J].
Breitenstein, O. ;
Bauer, J. ;
Rakotoniaina, J. P. .
SEMICONDUCTORS, 2007, 41 (04) :440-443
[2]   Series resistance imaging in solar cells by lock-in thermography [J].
Breitenstein, O ;
Rakotoniaina, JP ;
van der Heide, ASH ;
Carstensen, J .
PROGRESS IN PHOTOVOLTAICS, 2005, 13 (08) :645-660
[3]   Shunts due to laser scribing of solar cells evaluated by highly sensitive lock-in thermography [J].
Breitenstein, O ;
Langenkamp, M ;
Lang, O ;
Schirrmacher, A .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 65 (1-4) :55-62
[4]   Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence [J].
Fuyuki, T ;
Kondo, H ;
Yamazaki, T ;
Takahashi, Y ;
Uraoka, Y .
APPLIED PHYSICS LETTERS, 2005, 86 (26) :1-3
[5]   Analytic findings in the electroluminescence characterization of crystalline silicon solar cells [J].
Fuyuki, Takashi ;
Kondo, Hayato ;
Kaji, Yasue ;
Ogane, Akiyoshi ;
Takahashi, Yu .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (02)
[6]   Spatially resolved evaluation of power losses in industrial solar cells by illuminated lock-in thermography [J].
Isenberg, J ;
Warta, W .
PROGRESS IN PHOTOVOLTAICS, 2004, 12 (05) :339-353
[7]   Electroluminescence analysis of high efficiency Cu(In,Ga)Se2 solar cells [J].
Kirchartz, Thomas ;
Rau, Uwe .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (10)
[8]   Scanning techniques applied to the characterisation of P and N type multicrystalline silicon [J].
Martinuzzi, S. ;
Palais, O. ;
Ostapenko, S. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2006, 9 (1-3) :230-235
[9]  
Noufi R, 1995, Google Patents, Patent No. [U.S. 5,441,897, 5441897]
[10]   Defect monitoring using scanning photoluminescence spectroscopy in multicrystalline silicon wafers [J].
Ostapenko, S ;
Tarasov, I ;
Kalejs, JP ;
Haessler, C ;
Reisner, EU .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2000, 15 (08) :840-848