Analysis and design of oscillatory control systems

被引:28
|
作者
Martínez, S
Cortés, J
Bullo, F
机构
[1] Univ Politecn Cataluna, Escola Univ Politecn Vilanova & Geltru, Vilanova I La Geltru 08800, Spain
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Gen Engn, Urbana, IL 61801 USA
关键词
averaging; geometric methods; oscillatory control; point stabilization; trajectory tracking for underactuated systems;
D O I
10.1109/TAC.2003.814104
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents analysis and design results for control systems subject to oscillatory inputs, i.e., inputs of large amplitude and high frequency. The key analysis results are a series expansion characterizing the averaged system and various Lie-algebraic conditions that guarantee the series can be summed. Various example systems provide insight into the results. With regards to design, we recover and extend a variety of point stabilization and trajectory tracking results using oscillatory controls. We present novel developments on stabilization of systems with positive trace and on tracking for second order underactuated systems.
引用
收藏
页码:1164 / 1177
页数:14
相关论文
共 50 条
  • [31] Networked Control Systems Analysis and Design: An Overview
    Magdi S. Mahmoud
    Arabian Journal for Science and Engineering, 2016, 41 : 711 - 758
  • [32] Stability analysis and design of fuzzy control systems
    Tahani, V
    Sheikholeslam, F
    1998 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AT THE IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE - PROCEEDINGS, VOL 1-2, 1998, : 456 - 461
  • [33] Design and analysis of multivariable fuzzy control systems
    Makrehchi, M
    Katebi, SD
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, 1997, 21 (01): : 95 - 110
  • [34] AN ANALYTICAL METHOD FOR ANALYSIS AND DESIGN OF CONTROL SYSTEMS
    LIU, SH
    THALER, GJ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1965, AC10 (01) : 49 - &
  • [35] Pattern control in oscillatory systems with invisible controllers
    Huang, Xiaoqing
    Cui, Xiaohua
    Liao, Xuhong
    Hu, Gang
    EPL, 2011, 95 (02)
  • [36] Parametric control of motions of nonlinear oscillatory systems
    Akulenko, L.D.
    Prikladnaya Matematika i Mekhanika, 2001, 65 (01): : 3 - 14
  • [37] Near optimal control for resonant oscillatory systems
    Kovaleva, A
    CONTROL OF OSCILLATIONS AND CHAOS - 1997 1ST INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS 1-3, 1997, : 435 - 438
  • [38] Oscillatory Tracking Control of a Class of Nonlinear Systems
    Wang, Zheng
    Guo, Yi
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2012, 134 (03):
  • [39] Benchmark Models for the Analysis and Control of Small-Signal Oscillatory Dynamics in Power Systems
    Canizares, C.
    Fernandes, T.
    Geraldi, E., Jr.
    Gerin-Lajoie, L.
    Gibbard, M.
    Hiskens, I.
    Kersulis, J.
    Kuiava, R.
    Lima, L.
    DeMarco, F.
    Martins, N.
    Pal, B. C.
    Piardi, A.
    Ramos, R.
    dos Santos, J.
    Silva, D.
    Singh, A. K.
    Tamimi, B.
    Vowles, D.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2017, 32 (01) : 715 - 722
  • [40] Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems
    Mladenova, Clementina D.
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2005, 4 : 99 - 103