Deep Laplacian Pyramid Networks for Fast and Accurate Super-Resolution

被引:1715
作者
Lai, Wei-Sheng [1 ]
Huang, Jia-Bin [2 ]
Ahuja, Narendra [3 ]
Yang, Ming-Hsuan [1 ]
机构
[1] Univ Calif, Merced, CA 95340 USA
[2] Virginia Tech, Blacksburg, VA USA
[3] Univ Illinois, Urbana, IL 61801 USA
来源
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017) | 2017年
关键词
IMAGE QUALITY ASSESSMENT;
D O I
10.1109/CVPR.2017.618
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks have recently demonstrated high-quality reconstruction for single-image superresolution. In this paper, we propose the Laplacian Pyramid Super-Resolution Network (LapSRN) to progressively reconstruct the sub-band residuals of high-resolution images. At each pyramid level, our model takes coarse-resolution feature maps as input, predicts the high-frequency residuals, and uses transposed convolutions for upsampling to the finer level. Our method does not require the bicubic interpolation as the pre-processing step and thus dramatically reduces the computational complexity. We train the proposed LapSRN with deep supervision using a robust Charbonnier loss function and achieve high-quality reconstruction. Furthermore, our network generates multi-scale predictions in one feed-forward pass through the progressive reconstruction, thereby facilitates resource-aware applications. Extensive quantitative and qualitative evaluations on benchmark datasets show that the proposed algorithm performs favorably against the state-of-the-art methods in terms of speed and accuracy.
引用
收藏
页码:5835 / 5843
页数:9
相关论文
共 38 条
[1]  
[Anonymous], 2015, NIPS
[2]  
[Anonymous], 2016, MULTIMED TOOLS APPL
[3]   Contour Detection and Hierarchical Image Segmentation [J].
Arbelaez, Pablo ;
Maire, Michael ;
Fowlkes, Charless ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (05) :898-916
[4]   Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding [J].
Bevilacqua, Marco ;
Roumy, Aline ;
Guillemot, Christine ;
Morel, Marie-Line Alberi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
[5]   Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods [J].
Bruhn A. ;
Weickert J. ;
Schnörr C. .
International Journal of Computer Vision, 2005, 61 (3) :1-21
[6]   THE LAPLACIAN PYRAMID AS A COMPACT IMAGE CODE [J].
BURT, PJ ;
ADELSON, EH .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1983, 31 (04) :532-540
[7]   Super-resolution through neighbor embedding [J].
Chang, H ;
Yeung, DY ;
Xiong, Y .
PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, 2004, :275-282
[8]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[9]   Shared Address Translation Revisited [J].
Dong, Xiaowan ;
Dwarkadas, Sandhya ;
Cox, Alan L. .
PROCEEDINGS OF THE ELEVENTH EUROPEAN CONFERENCE ON COMPUTER SYSTEMS, (EUROSYS 2016), 2016,
[10]   Image and Video Upscaling from Local Self-Examples [J].
Freedman, Gilad ;
Fattal, Raanan .
ACM TRANSACTIONS ON GRAPHICS, 2011, 30 (02)