Sharp bounds on enstrophy growth in the viscous Burgers equation

被引:14
|
作者
Pelinovsky, Dmitry [1 ]
机构
[1] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2012年 / 468卷 / 2147期
基金
加拿大自然科学与工程研究理事会;
关键词
viscous Burgers equation; enstrophy; Laplace method; Cole Hopf transformation;
D O I
10.1098/rspa.2012.0200
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We use the Cole-Hopf transformation and the Laplace method for the heat equation to justify the numerical results on enstrophy growth in the viscous Burgers equation on the unit circle. We show that the maximum enstrophy achieved in the time evolution is scaled as epsilon(3/2), where epsilon is the large initial enstrophy, whereas the time needed for reaching the maximal enstrophy is scaled as epsilon(-1/2). These bounds are sharp for initial conditions given by odd C-3 functions that are convex on half-period.
引用
收藏
页码:3636 / 3648
页数:13
相关论文
共 50 条