mvabund- an R package for model-based analysis of multivariate abundance data

被引:1183
|
作者
Wang, Yi [1 ,2 ]
Naumann, Ulrike [1 ]
Wright, Stephen T. [1 ]
Warton, David I. [1 ,3 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Univ New S Wales, Sch Comp Sci & Engn, Sydney, NSW 2052, Australia
[3] Univ New S Wales, Evolut & Ecol Res Ctr, Sydney, NSW 2052, Australia
来源
METHODS IN ECOLOGY AND EVOLUTION | 2012年 / 3卷 / 03期
基金
澳大利亚研究理事会;
关键词
community composition; generalised linear model; graphical methods; negative binomial regression; permutation test; resampling methods; significance test;
D O I
10.1111/j.2041-210X.2012.00190.x
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
1. The mvabund package for R provides tools for model-based analysis of multivariate abundance data in ecology. 2. This includes methods for visualising data, fitting predictive models, checking model assumptions, as well as testing hypotheses about the communityenvironment association. 3. This paper briefly introduces the package and demonstrates its functionality by example.
引用
收藏
页码:471 / 474
页数:4
相关论文
共 50 条
  • [1] Model-based simultaneous clustering and ordination of multivariate abundance data in ecology
    Hui, Francis K. C.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 105 : 1 - 10
  • [2] An R package for the forward analysis of multivariate data
    Corbellini, Aldo
    Konis, Kjell
    DATA ANALYSIS, CLASSIFICATION AND THE FORWARD SEARCH, 2006, : 189 - 197
  • [3] BayesBinMix: an R Package for Model Based Clustering of Multivariate Binary Data
    Papastamoulis, Panagiotis
    Rattray, Magnus
    R JOURNAL, 2017, 9 (01): : 403 - 420
  • [4] teigen: An R Package for Model-Based Clustering and Classification via the Multivariate t Distribution
    Andrews, Jeffrey L.
    Wickins, Jaymeson R.
    Boers, Nicholas M.
    McNicholas, Paul D.
    JOURNAL OF STATISTICAL SOFTWARE, 2018, 83 (07): : 1 - 32
  • [5] HDclassif: An R Package for Model-Based Clustering and Discriminant Analysis of High-Dimensional Data
    Berge, Laurent
    Bouveyron, Charles
    Girard, Stephane
    JOURNAL OF STATISTICAL SOFTWARE, 2012, 46 (06): : 1 - 29
  • [6] MGLM: An R Package for Multivariate Categorical Data Analysis
    Kim, Juhyun
    Zhang, Yiwen
    Day, Joshua
    Zhou, Hua
    R JOURNAL, 2018, 10 (01): : 73 - 90
  • [7] HeteroGGM: an R package for Gaussian graphical model-based heterogeneity analysis
    Ren, Mingyang
    Zhang, Sanguo
    Zhang, Qingzhao
    Ma, Shuangge
    BIOINFORMATICS, 2021, 37 (18) : 3073 - 3074
  • [8] Multivariate analysis of mixed data. The R Package PCAmixdata
    Chavent, Marie
    Kuentz, Vanessa
    Labenne, Amaury
    Saracco, Jerome
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2022, 15 (03) : 606 - 645
  • [9] Model-based clustering for multivariate functional data
    Jacques, Julien
    Preda, Cristian
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 92 - 106
  • [10] FactoMineR: An R package for multivariate analysis
    Le, Sebastien
    Josse, Julie
    Husson, Francois
    JOURNAL OF STATISTICAL SOFTWARE, 2008, 25 (01): : 1 - 18