Evidence of Correlation between Catalyst Particles and the Single-Wall Carbon Nanotube Diameter: A First Step towards Chirality Control

被引:127
作者
Fiawoo, M. -F. C. [1 ,2 ]
Bonnot, A. -M. [3 ]
Amara, H. [1 ]
Bichara, C. [4 ,5 ]
Thibault-Penisson, J. [6 ,7 ]
Loiseau, A. [1 ]
机构
[1] ONERA CNRS, Lab Etud Microstruct, F-92322 Chatillon, France
[2] Monash Univ, Dept Mat Engn, Clayton, Vic 3168, Australia
[3] CNRS UJF, Inst Louis Neel, F-38042 Grenoble 9, France
[4] CNRS, Ctr Interdisciplinaire Nanosci Marseille, F-13288 Marseille 09, France
[5] Aix Marseille Univ, F-13288 Marseille 09, France
[6] CNRS, Inst Mat Microelect Nanosci Provence, F-13397 Marseille 20, France
[7] Aix Marseille Univ, F-13397 Marseille 20, France
关键词
CHEMICAL-VAPOR-DEPOSITION; GROWTH; NANOPARTICLES; SPECTROSCOPY; NUCLEATION; PRESSURE; SCALE;
D O I
10.1103/PhysRevLett.108.195503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Controlling the structure of single-wall carbon nanotubes during their synthesis by chemical vapor deposition remains a challenging issue. Here, using a specific synthesis protocol and ex situ transmission electron microscopy, we perform a statistical analysis of the structure of the tubes and of the catalyst particles from which they grow. We discriminate two nucleation modes, corresponding to different nanotube-particle junctions, that occur independently of the particle size. With the support of tight binding calculations, we show that a direct control of the nanotube diameter by the particle can only be achieved under growth conditions close to thermodynamic equilibrium.
引用
收藏
页数:5
相关论文
共 28 条
[1]   Understanding the nucleation mechanisms of carbon nanotubes in catalytic chemical vapor deposition [J].
Amara, H. ;
Bichara, C. ;
Ducastelle, F. .
PHYSICAL REVIEW LETTERS, 2008, 100 (05)
[2]   Tight-binding potential for atomistic simulations of carbon interacting with transition metals: Application to the Ni-C system [J].
Amara, H. ;
Roussel, J. -M. ;
Bichara, C. ;
Gaspard, J. -P. ;
Ducastelle, F. .
PHYSICAL REVIEW B, 2009, 79 (01)
[3]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[4]   Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst [J].
Bachilo, SM ;
Balzano, L ;
Herrera, JE ;
Pompeo, F ;
Resasco, DE ;
Weisman, RB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (37) :11186-11187
[5]   Toward the extraction of single species of sinale-walled carbon nanotubes using fluorene-based polymers [J].
Chen, Fuming ;
Wang, Bo ;
Chen, Yuan ;
Li, Lain-Jong .
NANO LETTERS, 2007, 7 (10) :3013-3017
[6]   Diameter-controlled synthesis of carbon nanotubes [J].
Cheung, CL ;
Kurtz, A ;
Park, H ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (10) :2429-2433
[7]  
Chiang WH, 2009, NAT MATER, V8, P882, DOI [10.1038/NMAT2531, 10.1038/nmat2531]
[8]   Substrate preparation techniques for direct investigation by TEM of single wall carbon nanotubes grown by chemical vapor deposition [J].
Fiawoo, M. -F. ;
Bonnot, A. -M. ;
Jourdain, V. ;
Michel, T. ;
Picher, M. ;
Arenal, R. ;
Thibault-Penisson, J. ;
Loiseau, A. .
SURFACE SCIENCE, 2009, 603 (08) :1115-1120
[9]   Transmission Electron Microscopy and UV-vis-IR Spectroscopy Analysis of the Diameter Sorting of Carbon Nanotubes by Gradient Density Ultracentrifugation [J].
Fleurier, Romain ;
Lauret, Jean-Sebastien ;
Lopez, Ugo ;
Loiseau, Annick .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (14) :2219-2223
[10]  
Frenkel D., 1996, Understanding Molecular Simulation: from Algorithms to Applications