Recognition of skin melanoma through dermoscopic image analysis

被引:2
|
作者
Gomez, Catalina [1 ]
Sofia Herrera, Diana [1 ]
机构
[1] Univ Los Andes, Dept Ingn Biomed, Bogota, Colombia
来源
13TH INTERNATIONAL CONFERENCE ON MEDICAL INFORMATION PROCESSING AND ANALYSIS | 2017年 / 10572卷
关键词
classification; color histograms; melanoma; segmentation; skin cancer; SVM;
D O I
10.1117/12.2285957
中图分类号
R-058 [];
学科分类号
摘要
Melanoma skin cancer diagnosis can be challenging due to the similarities of the early stage symptoms with regular moles. Standardized visual parameters can be determined and characterized to suspect a melanoma cancer type. The automation of this diagnosis could have an impact in the medical field by providing a tool to support the specialists with high accuracy. The objective of this study is to develop an algorithm trained to distinguish a highly probable melanoma from a non-dangerous mole by the segmentation and classification of dermoscopic mole images. We evaluate our approach on the dataset provided by the International Skin Imaging Collaboration used in the International Challenge Skin Lesion Analysis Towards Melanoma Detection. For the segmentation task, we apply a preprocessing algorithm and use Otsu's thresholding in the best performing color space; the average Jaccard Index in the test dataset is 70.05%. For the subsequent classification stage, we use joint histograms in the YCbCr color space, a RBF Gaussian SVM trained with five features concerning circularity and irregularity of the segmented lesion, and the Gray Level Co-occurrence matrix features for texture analysis. These features are combined to obtain an Average Classification Accuracy of 63.3% in the test dataset.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Dermatoscopic image melanoma recognition based on CFLDnet fusion network
    Liu, Jing
    Chen, Aibin
    Zhou, Guoxiong
    Chen, Wenjie
    Peng, Ning
    Yan, Na
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (17) : 25477 - 25494
  • [42] Automatic segmentation and melanoma detection based on color and texture features in dermoscopic images
    Oukil, S.
    Kasmi, R.
    Mokrani, K.
    Garcia-Zapirain, B.
    SKIN RESEARCH AND TECHNOLOGY, 2022, 28 (02) : 203 - 211
  • [43] Melanoma Classification Using a Novel Deep Convolutional Neural Network with Dermoscopic Images
    Kaur, Ranpreet
    GholamHosseini, Hamid
    Sinha, Roopak
    Linden, Maria
    SENSORS, 2022, 22 (03)
  • [44] Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task
    Brinker, Titus J.
    Hekler, Achim
    Enk, Alexander H.
    Klode, Joachim
    Hauschild, Axel
    Berking, Carola
    Schilling, Bastian
    Haferkamp, Sebastian
    Schadendorf, Dirk
    Holland-Letz, Tim
    Utikal, Jochen S.
    von Kalle, Christof
    EUROPEAN JOURNAL OF CANCER, 2019, 113 : 47 - 54
  • [45] GRAPH-BASED SKIN LESION SEGMENTATION OF MULTISPECTRAL DERMOSCOPIC IMAGES
    Lezoray, O.
    Revenu, M.
    Desvignes, M.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 897 - 901
  • [46] Extraction of skin lesions from non-dermoscopic images for surgical excision of melanoma
    M. Hossein Jafari
    Ebrahim Nasr-Esfahani
    Nader Karimi
    S. M. Reza Soroushmehr
    Shadrokh Samavi
    Kayvan Najarian
    International Journal of Computer Assisted Radiology and Surgery, 2017, 12 : 1021 - 1030
  • [47] Dermoscopic Findings for the Early Detection of Melanoma: An Analysis of 200 Cases
    Ciudad-Blanco, C.
    Aviles-Izquierdo, J. A.
    Lazaro-Ochaita, P.
    Suarez-Fernandez, R.
    ACTAS DERMO-SIFILIOGRAFICAS, 2014, 105 (07): : 683 - 693
  • [48] Extraction of skin lesions from non-dermoscopic images for surgical excision of melanoma
    Jafari, M. Hossein
    Nasr-Esfahani, Ebrahim
    Karimi, Nader
    Soroushmehr, S. M. Reza
    Samavi, Shadrokh
    Najarian, Kayvan
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2017, 12 (06) : 1021 - 1030
  • [49] Asymmetry Measures of Dermoscopic Images for Automated Melanoma Detection
    Lancaster, Keith
    Zouridakis, George
    2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG, 2023, : 151 - 154
  • [50] Melanoma: clinical and dermoscopic diagnosis
    Brancaccio, Gabriella
    Russo, Teresa
    Lallas, Aimilios
    Moscarella, Elvira
    Agozzino, Marina
    Argenziano, Giuseppe
    GIORNALE ITALIANO DI DERMATOLOGIA E VENEREOLOGIA, 2017, 152 (03): : 213 - 223