Rapid, Accurate, and On-Site Detection of C-difficile in Stool Samples

被引:28
作者
Bomers, Marije K. [1 ]
Menke, Frederik P. [1 ]
Savage, Richard S. [2 ,3 ]
Vandenbroucke-Grauls, Christina M. J. E. [4 ]
van Agtmael, Michiel A. [1 ]
Covington, James A. [5 ]
Smulders, Yvo M. [1 ]
机构
[1] Vrije Univ Amsterdam, Med Ctr, Dept Internal Med, NL-1007 MB Amsterdam, Netherlands
[2] Univ Warwick, Syst Biol Ctr, Coventry CV4 7AL, W Midlands, England
[3] Univ Warwick, Warwick Med Sch, Coventry CV4 7AL, W Midlands, England
[4] Vrije Univ Amsterdam, Med Ctr, Dept Med Microbiol & Infect Control, NL-1007 MB Amsterdam, Netherlands
[5] Univ Warwick, Sch Engn, Coventry CV4 7AL, W Midlands, England
基金
英国医学研究理事会;
关键词
VOLATILE ORGANIC-COMPOUNDS; ION MOBILITY SPECTROMETRY; DIAGNOSIS; EPIDEMIOLOGY; INFECTION; OUTBREAK; DELAYS;
D O I
10.1038/ajg.2015.90
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
OBJECTIVES: A rapid test to diagnose Clostridium difficile infection (CDI) on hospital wards could minimize common but critical diagnostic delay. Field asymmetric ion mobility spectrometry (FAIMS) is a portable mass spectrometry instrument that quickly analyses the chemical composition of gaseous mixtures (e.g., above a stool sample). Can FAIMS accurately distinguish Clostridium difficile-positive from -negative stool samples? METHODS: We analyzed 213 stool samples with FAIMS, of which 71 were Clostridium difficile positive by microbiological analysis. The samples were divided into training, test, and validation samples. We used the training and test samples (n=135) to identify which sample characteristics discriminate between positive and negative samples, and to build machine learning algorithms interpreting these characteristics. The best performing algorithm was then prospectively validated on new, blinded validation samples (n=78). The predicted probability of CDI (as calculated by the algorithm) was compared with the microbiological test results (direct toxin test and culture). RESULTS: Using a Random Forest classification algorithm, FAIMS had a high discriminatory ability on the training and test samples (C-statistic 0.91 (95% confidence interval (CI): 0.86-0.97)). When applied to the blinded validation samples, the C-statistic was 0.86 (0.75-0.97). For samples analyzed <= 7 days of collection (n=76), diagnostic accuracy was even higher (C-statistic: 0.93 (0.85-1.00)). A cutoff value of 0.32 for predicted probability corresponded with a sensitivity of 92.3% (95% CI: 77.4-98.6%) and specificity of 86.0% (78.3-89.3%). For even fresher samples, discriminatory ability further increased. CONCLUSIONS: FAIMS analysis of unprocessed stool samples can differentiate between Clostridium difficile-positive and -negative samples with high diagnostic accuracy.
引用
收藏
页码:588 / 594
页数:7
相关论文
共 20 条
[1]   Using a dog's superior olfactory sensitivity to identify Clostridium difficile in stools and patients: proof of principle study [J].
Bomers, Marije K. ;
van Agtmael, Michiel A. ;
Luik, Hotsche ;
van Veen, Merk C. ;
Vandenbroucke-Grauls, Christina M. J. E. ;
Smulders, Yvo M. .
BMJ-BRITISH MEDICAL JOURNAL, 2012, 345
[2]   Device-independent, real-time identification of bacterial pathogens with a metal oxide-based olfactory sensor [J].
Bruins, M. ;
Bos, A. ;
Petit, P. L. C. ;
Eadie, K. ;
Rog, A. ;
Bos, R. ;
van Ramshorst, G. H. ;
van Belkum, A. .
EUROPEAN JOURNAL OF CLINICAL MICROBIOLOGY & INFECTIOUS DISEASES, 2009, 28 (07) :775-780
[3]   Does the nose know?: The odiferous diagnosis of Clostridium difficile-associated diarrhea [J].
Burdette, Steven D. ;
Bernstein, Jack M. .
CLINICAL INFECTIOUS DISEASES, 2007, 44 (08) :1142-1142
[4]   The Scent of Colorectal Cancer: Detection by Volatile Organic Compound Analysis [J].
de Boer, Nanne K. H. ;
de Meij, Tim G. J. ;
Oort, Frank A. ;
Ben Larbi, Ilhame ;
Mulder, Chris J. J. ;
van Bodegraven, Adriaan A. ;
van der Schee, Marc P. .
CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2014, 12 (07) :1085-1089
[5]   Exhaled Breath Profiling Enables Discrimination of Chronic Obstructive Pulmonary Disease and Asthma [J].
Fens, Niki ;
Zwinderman, Aeilko H. ;
van der Schee, Marc P. ;
de Nijs, Selma B. ;
Dijkers, Erica ;
Roldaan, Albert C. ;
Cheung, David ;
Bel, Elisabeth H. ;
Sterk, Peter J. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2009, 180 (11) :1076-1082
[6]   The Changing Epidemiology of Clostridium difficile Infections [J].
Freeman, J. ;
Bauer, M. P. ;
Baines, S. D. ;
Corver, J. ;
Fawley, W. N. ;
Goorhuis, B. ;
Kuijper, E. J. ;
Wilcox, M. H. .
CLINICAL MICROBIOLOGY REVIEWS, 2010, 23 (03) :529-+
[7]   Reducing delays in the diagnosis and treatment of Clostridium difficile diarrhoea [J].
Frenz, MB ;
McIntyre, AS .
QJM-AN INTERNATIONAL JOURNAL OF MEDICINE, 2003, 96 (08) :579-582
[8]   Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease [J].
Garner, Catherine E. ;
Smith, Stephen ;
Costello, Ben de Lacy ;
White, Paul ;
Spencer, Robert ;
Probert, Chris S. J. ;
Ratcliffe, Norman M. .
FASEB JOURNAL, 2007, 21 (08) :1675-1688
[9]   Big Data Bioinformatics [J].
Greene, Casey S. ;
Tan, Jie ;
Ung, Matthew ;
Moore, Jason H. ;
Cheng, Chao .
JOURNAL OF CELLULAR PHYSIOLOGY, 2014, 229 (12) :1896-1900
[10]  
Johansen A, 2002, AGE AGEING, V31