Blowing up symplectic orbifolds

被引:33
作者
Godinho, L [1 ]
机构
[1] Univ Tecn Lisboa, Dept Matemat, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
moment map; symplectic orbifolds; symplectic reduction; torus actions;
D O I
10.1023/A:1011628628835
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the first part of this paper we study different blow-up constructions on symplectic orbifolds. Unlike the manifold case, we can define different blow-ups by using different circle actions. In the second part, we use some of these constructions to describe the behavior of reduced spaces of a Hamiltonian circle action on a symplectic orbifold, when passing a critical level of its Hamiltonian function. Using these descriptions, we generalize, in the manifold case, the wall-crossing theorem of Guillemin and Sternberg to the case of a Hamiltonian torus action not necessarily quasi-free and also the Duistermaat-Heckman theorem to intervals of values of the Hamiltonian function containing critical values.
引用
收藏
页码:117 / 162
页数:46
相关论文
共 23 条
[1]  
AlAmrani A, 1997, LECT NOTES PURE APPL, V193, P1
[2]  
[Anonymous], 1997, 3 DIMENSIONAL GEOMET
[3]   CONVEXITY AND COMMUTING HAMILTONIANS [J].
ATIYAH, MF .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (JAN) :1-15
[4]  
AUDIN M, 1991, TOPOLOGY TORUS ACTIO, V93
[5]  
BRION M, 1990, PROG MATH, V92, P509
[6]   ON THE VARIATION IN THE CO-HOMOLOGY OF THE SYMPLECTIC FORM OF THE REDUCED PHASE-SPACE [J].
DUISTERMAAT, JJ ;
HECKMAN, GJ .
INVENTIONES MATHEMATICAE, 1982, 69 (02) :259-268
[7]   Arnold conjecture and Gromov-Witten invariant [J].
Fukaya, K ;
Ono, K .
TOPOLOGY, 1999, 38 (05) :933-1048
[8]   BIRATIONAL EQUIVALENCE IN THE SYMPLECTIC CATEGORY [J].
GUILLEMIN, V ;
STERNBERG, S .
INVENTIONES MATHEMATICAE, 1989, 97 (03) :485-522
[9]   CONVEXITY PROPERTIES OF THE MOMENT MAPPING [J].
GUILLEMIN, V ;
STERNBERG, S .
INVENTIONES MATHEMATICAE, 1982, 67 (03) :491-513
[10]  
GUILLEMIN V, 1994, Progr. Math., V122