First-Principles Study on the Tunable Electronic and Magnetic Properties of a Janus GaInSeTe Nanosheet via Strain and Defect Engineering

被引:5
|
作者
Chen, Tong [1 ,2 ,3 ]
Liu, Guogang [1 ]
Dong, Xiansheng [1 ]
Li, Huili [2 ,3 ,4 ]
Zhou, Guanghui [2 ,3 ]
机构
[1] Jiangxi Univ Sci & Technol, Energy Mat Comp Ctr, Sch Energy & Mech Engn, Nanchang 330013, Jiangxi, Peoples R China
[2] Hunan Normal Univ, Minist Educ, Dept Phys, Key Lab Low Dimens Struct & Quantum Manipulat, Changsha 410081, Peoples R China
[3] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat H, Changsha 410081, Peoples R China
[4] Jiangxi Univ Tradit Chinese Med, Sch Comp Sci, Nanchang 330004, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Janus GaInSeTe nanosheet; strain engineering; defect engineering; first-principles study; tunable electronic and magnetic properties; FIELD; MOS2; INSIGHTS; VACANCY;
D O I
10.1007/s11664-022-09481-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, Janus two-dimensional (2D) materials have gained much attention due to their intrinsic vertical dipole. Here, we extensively investigate the electronic and magnetic properties of a new type of two-dimensional graphene-like Janus GaInSeTe monolayer by adopting the first- principles methods based on the density functional theory. It is found that 2D Janus GaInSeTe exhibits high dynamical stability and acts as a direct band gap semiconductor. The novel electronic and magnetic properties of the GaInSeTe nanosheet can be modulated via biaxial strain and atomic-sized structural defects. Specifically, the significant changes of semiconductor-to-metal and direct-to-indirect semiconductor transitions are driven by the biaxial strain. Our results also confirm that different types of single vacancy and multiple vacancy can effectively alter the electronic and magnetic properties of the GaInSeTe monolayer. Depending on the different vacancies, they induce metallic (V-Ga and V-In), direct band-gap semiconductive (V-Se, V-GaIn and V-GaInTeSe) and indirect band-gap semiconductor (V-Te, V-TeSe), respectively. It was also found that the inclusion of an In vacancy induces magnetism in the Janus GaInSeTe monolayer. Moreover, results show that the electronic and magnetic properties of Janus GaInSeTe monolayer are significantly modulated by vacancies and the external strains, and it displays varied band gaps of magnetic or nonmagnetic, multiple magnetic moments in semiconducting or metallic structures. These tunable electronic structure and magnetic properties of the Janus GaInSeTe monolayer can be utilized for the development of low-dimensional spintronics devices. Graphical Abstract The electronic and magnetic properties of a Janus GaInSeTe monolayer are significantly modulated by vacancies and the external strain, and it displays varied magnetic or nonmagnetic band gaps and multiple magnetic moments in semiconducting or metallic structures. [GRAPHICS]
引用
收藏
页码:2212 / 2220
页数:9
相关论文
共 50 条
  • [41] Electronic and optical properties of sulfur vacancy-defect monolayer PtS2: A first-principles study
    Ji, Yanju
    Liu, Yifan
    Xu, Yuanfeng
    Liu, Liqiang
    Chen, Ying
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 255
  • [42] A first-principles theoretical study of the electronic and optical properties of twisted bilayer GaN structures
    Cai, Xiang
    Deng, Shuo
    Li, Lijie
    Hao, Ling
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2020, 19 (03) : 910 - 916
  • [43] Electronic and optical properties of silicene on GaAs(111) with hydrogen intercalation: a first-principles study
    Yu, Ting
    Zhang, He
    Li, Dan
    Lu, Yanwu
    RSC ADVANCES, 2021, 11 (26) : 16040 - 16050
  • [44] First-principles study of the structural and electronic properties of graphene/MoS2 interfaces
    Nguyen Ngoc Hieu
    Huynh Vinh Phuc
    Ilyasov, Victor V.
    Chien, Nguyen D.
    Poklonski, Nikolai A.
    Nguyen Van Hieu
    Nguyen, Chuong V.
    JOURNAL OF APPLIED PHYSICS, 2017, 122 (10)
  • [45] Engineering the structural, electronic, and optical properties of the novel monolayer photoelectric semiconductor C2/m-SnX (X = P, as) via strain: a first-principles study
    Li, Fen
    Zhang, Xiong-Fei
    Ruan, Ju-Qi
    Zhao, Yi-Fen
    Xiong, Kai
    He, Yao
    Chen, Qing-Yuan
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2025, 24 (02)
  • [46] First-principles study of structural and electronic properties of substitutionally doped arsenene
    Liu, Zhiwei
    Li, Xiaodan
    Zhou, Congcong
    Hu, Taotao
    Zhang, LiYao
    Niu, Ruixia
    Guan, Yue
    Zhang, Ningxia
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 119
  • [47] Point defects in two-dimensional BeO monolayer: a first-principles study on electronic and magnetic properties
    Bafekry, A.
    Faraji, M.
    Karbasizadeh, S.
    Khatibani, A. Bagheri
    Ziabari, A. Abdolahzadeh
    Gogova, D.
    Ghergherehchi, M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (42) : 24301 - 24312
  • [48] Electronic, magnetic properties of transition metal doped Tl2S: First-principles study
    Song, Nahong
    Wang, Yusheng
    Yu, Weiyang
    Zhang, Liying
    Yang, Yuye
    Jia, Yu
    APPLIED SURFACE SCIENCE, 2017, 425 : 393 - 399
  • [49] Structural, electronic, magnetic and optical properties of CaO induced by oxygen incorporation effects: A first-principles study
    Duy Khanh Nguyen
    Vo Van On
    Hoat, D. M.
    Rivas-Silva, J. F.
    Cocoletzi, Gregorio H.
    PHYSICS LETTERS A, 2021, 397
  • [50] Structural, electronic, and transport properties of Janus XMoSiP2 ( X= S, Se, Te) monolayers: a first-principles study
    Hiep, Nguyen T.
    Nguyen, Cuong Q.
    Poklonski, N. A.
    Duque, C. A.
    Phuc, Huynh, V
    Lu, D., V
    Hieu, Nguyen N.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2023, 56 (38)