Strong commutativity preserving maps on Lie ideals

被引:49
作者
Lin, Jer-Shyong [2 ]
Liu, Cheng-Kai [1 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua 500, Taiwan
[2] Yuanpei Univ, Dept Informat Management, Hsinchu 300, Taiwan
关键词
prime ring; Lie ideal; strong commutativity preserving;
D O I
10.1016/j.laa.2007.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a prime ring and let R be a noncentral Lie ideal of A. An additive map f : R -> A is called strong commutativity preserving (SCP) on R if [f(x), f(y)] = [x, y] for all x, y is an element of R. In this paper we show that if f is SCP on R, then there exist; lambda is an element of C, lambda(2) = 1 and an additive map mu : R -> L(A) such that f (x) = lambda x + mu(x) for all x is an element of R where C is the extended centroid of A, unless chan A = 2 and A satisfies the standard identity of degree 4. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1601 / 1609
页数:9
相关论文
共 25 条
[1]   Commutativity preserving mappings on semiprime rings [J].
Banning, R ;
Mathieu, M .
COMMUNICATIONS IN ALGEBRA, 1997, 25 (01) :247-265
[2]   On functional identities and commuting additive mappings [J].
Beidar, KI .
COMMUNICATIONS IN ALGEBRA, 1998, 26 (06) :1819-1850
[3]   On functional identities and d-free subsets of rings.: I [J].
Beidar, KI ;
Chebotar, MA .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (08) :3925-3951
[4]  
Beidar KI, 2000, COMMUN ALGEBRA, V28, P3953, DOI 10.1080/00927870008827067
[5]  
Beidar KI., 1996, Rings with generalized identities
[6]   ON COMMUTATIVITY AND STRONG COMMUTATIVITY-PRESERVING MAPS [J].
BELL, HE ;
DAIF, MN .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (04) :443-447
[7]   On bilinear maps on matrices with applications to commutativity preservers [J].
Bresar, M ;
Semrl, P .
JOURNAL OF ALGEBRA, 2006, 301 (02) :803-837
[8]   STRONG COMMUTATIVITY PRESERVING-MAPS OF SEMIPRIME RINGS [J].
BRESAR, M ;
MIERS, CR .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (04) :457-460
[9]   Commutativity preserving linear maps on central simple algebras [J].
Bresar, M ;
Semrl, P .
JOURNAL OF ALGEBRA, 2005, 284 (01) :102-110