Stabilities in plane Poiseuille flow of Herschel-Bulkley fluid

被引:14
|
作者
Liu, R. [1 ]
Ding, Z. [2 ]
Hu, K. X. [3 ]
机构
[1] Gui Lin Univ Elect Technol, Sch Mech & Elect Engn, Gui Lin 541004, Peoples R China
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[3] Ningbo Univ, Sch Mech Engn & Mech, Ningbo 315211, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Herschel-Bullcley fluid; Plan Poiseuille flow; Nonmodal stability; 3-DIMENSIONAL PERTURBATIONS; LINEAR-STABILITY; ENERGY GROWTH; INSTABILITY; TRANSITION;
D O I
10.1016/j.jnnfm.2017.11.007
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Linear stability in plane Poiseuille flow of a yield-stress shear-thinning fluid is considered. The rheological behavior of the fluid is described by the Herschel Bulkley model. The effect of shear-thinning on the stability is investigated using the energy method and the nonmodal stability theory. The result of the energy method shows that with the increase of shear thinning, the critical energy Reynolds number decreases for both the streamwise and spanwise disturbances. For the nonmodal stability, we focus on the response to initial conditions by examining the energy growth function G(t). For a Herschel Bulkley fluid, it is found that there can be a rather large transient growth even though the linear operator of the plan Poiseuille flow has no unstable eigenvalue. The results show that the shear thinning plays an important role in determining the energy growth rate and the structure of the disturbance with optimal transient growth.
引用
收藏
页码:132 / 144
页数:13
相关论文
共 50 条
  • [1] Energy growth in Hagen-Poiseuille flow of Herschel-Bulkley fluid
    Bentrad, Hocine
    Esmael, Ahmed
    Nouar, Cherif
    Lefevre, Alain
    Ait-Messaoudene, Noureddine
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2017, 241 : 43 - 59
  • [2] Theoretical Study on Poiseuille Flow of Herschel-Bulkley Fluid in Porous Media
    Sankarl, D. S.
    Viswanathan, K. K.
    Nagar, Atulya K.
    Jafaars, Nurul Aini Binti
    Kumar, A. Vanav
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2022, 8 (04): : 1246 - 1269
  • [3] Weakly compressible Poiseuille flows of a Herschel-Bulkley fluid
    Taliadorou, Eleni
    Georgiou, Georgios C.
    Moulitsas, Irene
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2009, 158 (1-3) : 162 - 169
  • [4] IMPLICATIONS OF INERTIA FOR HYDROELASTIC INSTABILITY OF HERSCHEL-BULKLEY FLUIDS IN PLANE POISEUILLE FLOW
    Jafargholinejad, Shapour
    Najafi, Mohammad
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2018, 56 (04) : 1205 - 1216
  • [5] Squeeze-flow of a Herschel-Bulkley fluid
    Sherwood, JD
    Durban, D
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1998, 77 (1-2) : 115 - 121
  • [6] Fractal analysis of Herschel-Bulkley fluid flow in a capillary
    Yun Mei-Juan
    Zheng Wei
    Li Yun-Bao
    Li Yu
    ACTA PHYSICA SINICA, 2012, 61 (16)
  • [7] Flow behavior of Herschel-Bulkley fluid in a slot die
    Nagashima, Masayuki
    Hasegawa, Tomiichi
    Narumi, Takatsune
    NIHON REOROJI GAKKAISHI, 2006, 34 (04) : 213 - 221
  • [8] Non stationary channel flow of a Herschel-Bulkley fluid
    Gianni, Roberto
    Fusi, Lorenzo
    Farina, Angiolo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 510 (01)
  • [9] HERSCHEL-BULKLEY FLUID FLOW CHARACTERISTICS IN A DUCT WITH AN OBSTACLE
    Ashrafi, Nariman
    Sadeghi, Ali
    Chegini, Armin
    Shafahi, Mehdi
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 7, 2019,
  • [10] HERSCHEL-BULKLEY FLUID-FLOW DEVELOPMENT IN A CHANNEL
    GUPTA, RC
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 1995, 34 (03) : 475 - 492