Electronic and mechanical properties of planar and tubular boron structures

被引:156
作者
Evans, MH
Joannopoulos, JD
Pantelides, ST
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[3] Oak Ridge Natl Lab, Condensed Matter Sci Div, Oak Ridge, TN 37831 USA
关键词
D O I
10.1103/PhysRevB.72.045434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report the results of first-principles calculations showing that boron can form a wide variety of metastable planar and tubular forms with unusual electronic and mechanical properties. The preferred planar structure is a buckled triangular lattice that breaks the threefold ground state degeneracy of the flat triangular plane. When the plane is rolled into a tube, the ground state degeneracy leads to a strong chirality dependence of the binding energy and elastic response, an unusual property that is not found in carbon nanotubes. The achiral (n,0) tubes derive their structure from the flat triangular plane. The achiral (n,n) boron nanotubes arise from the buckled plane, and have large cohesive energies and different structures as a result. (n,n) boron nanotubes have an internal relaxation mechanism that results in a very low Poisson ratio. The strong variation in elastic properties of boron nanotubes makes them the mechanical analogue of carbon nanotubes, and may make them ideal candidates for applications in composite materials and nanoelectromechanical systems.
引用
收藏
页数:6
相关论文
共 28 条
[11]   Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory [J].
Fuchs, M ;
Scheffler, M .
COMPUTER PHYSICS COMMUNICATIONS, 1999, 119 (01) :67-98
[12]   First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. [J].
Gonze, X .
PHYSICAL REVIEW B, 1997, 55 (16) :10337-10354
[13]   First-principles computation of material properties: the ABINIT software project [J].
Gonze, X ;
Beuken, JM ;
Caracas, R ;
Detraux, F ;
Fuchs, M ;
Rignanese, GM ;
Sindic, L ;
Verstraete, M ;
Zerah, G ;
Jollet, F ;
Torrent, M ;
Roy, A ;
Mikami, M ;
Ghosez, P ;
Raty, JY ;
Allan, DC .
COMPUTATIONAL MATERIALS SCIENCE, 2002, 25 (03) :478-492
[14]   Elastic properties of C and BxCyNz composite nanotubes [J].
Hernandez, E ;
Goze, C ;
Bernier, P ;
Rubio, A .
PHYSICAL REVIEW LETTERS, 1998, 80 (20) :4502-4505
[15]   Ballistic carbon nanotube field-effect transistors [J].
Javey, A ;
Guo, J ;
Wang, Q ;
Lundstrom, M ;
Dai, HJ .
NATURE, 2003, 424 (6949) :654-657
[16]  
KITTEL C, 1986, INTRO SOLID STATE PH, P55
[17]   Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites [J].
Mamedov, AA ;
Kotov, NA ;
Prato, M ;
Guldi, DM ;
Wicksted, JP ;
Hirsch, A .
NATURE MATERIALS, 2002, 1 (03) :190-194
[18]   Boron nanowires synthesized by laser ablation at high temperature [J].
Meng, XM ;
Hu, JQ ;
Jiang, Y ;
Lee, CS ;
Lee, ST .
CHEMICAL PHYSICS LETTERS, 2003, 370 (5-6) :825-828
[19]  
NEWKIRK AE, 1964, BORON METALO BORON C
[20]   Crystalline boron nanowires [J].
Otten, CJ ;
Lourie, OR ;
Yu, MF ;
Cowley, JM ;
Dyer, MJ ;
Ruoff, RS ;
Buhro, WE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (17) :4564-4565