Dark matter from axion strings with adaptive mesh refinement

被引:144
作者
Buschmann, Malte [1 ]
Foster, Joshua W. [2 ,3 ,4 ]
Hook, Anson [5 ]
Peterson, Adam [6 ]
Willcox, Don E. [6 ]
Zhang, Weiqun [6 ]
Safdi, Benjamin R. [3 ,4 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Univ Michigan, Leinweber Ctr Theoret Phys, Dept Phys, Ann Arbor, MI 48109 USA
[3] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA
[5] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA
[6] Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA
关键词
GOLDSTONE BOSONS; CP CONSERVATION; DOMAIN-WALLS; EVOLUTION; MODELS;
D O I
10.1038/s41467-022-28669-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Axions are hypothetical particles that may explain the observed dark matter density and the non-observation of a neutron electric dipole moment. An increasing number of axion laboratory searches are underway worldwide, but these efforts are made difficult by the fact that the axion mass is largely unconstrained. If the axion is generated after inflation there is a unique mass that gives rise to the observed dark matter abundance; due to nonlinearities and topological defects known as strings, computing this mass accurately has been a challenge for four decades. Recent works, making use of large static lattice simulations, have led to largely disparate predictions for the axion mass, spanning the range from 25 microelectronvolts to over 500 microelectronvolts. In this work we show that adaptive mesh refinement simulations are better suited for axion cosmology than the previously-used static lattice simulations because only the string cores require high spatial resolution. Using dedicated adaptive mesh refinement simulations we obtain an over three order of magnitude leap in dynamic range and provide evidence that axion strings radiate their energy with a scale-invariant spectrum, to within similar to 5% precision, leading to a mass prediction in the range (40,180) microelectronvolts.
引用
收藏
页数:10
相关论文
共 54 条
[1]   A COSMOLOGICAL BOUND ON THE INVISIBLE AXION [J].
ABBOTT, LF ;
SIKIVIE, P .
PHYSICS LETTERS B, 1983, 120 (1-3) :133-136
[2]   Measurement of the Permanent Electric Dipole Moment of the Neutron [J].
Abel, C. ;
Afach, S. ;
Ayres, N. J. ;
Baker, C. A. ;
Ban, G. ;
Bison, G. ;
Bodek, K. ;
Bondar, V. ;
Burghoff, M. ;
Chanel, E. ;
Chowdhuri, Z. ;
Chiu, P. -J. ;
Clement, B. ;
Crawford, C. B. ;
Daum, M. ;
Emmenegger, S. ;
Ferraris-Bouchez, L. ;
Fertl, M. ;
Flaux, P. ;
Franke, B. ;
Fratangelo, A. ;
Geltenbort, P. ;
Green, K. ;
Griffith, W. C. ;
van der Grinten, M. ;
Grujic, Z. D. ;
Harris, P. G. ;
Hayen, L. ;
Heil, W. ;
Henneck, R. ;
Helaine, V. ;
Hild, N. ;
Hodge, Z. ;
Horras, M. ;
Iaydjiev, P. ;
Ivanov, S. N. ;
Kasprzak, M. ;
Kermaidic, Y. ;
Kirch, K. ;
Knecht, A. ;
Knowles, P. ;
Koch, H. -C. ;
Koss, P. A. ;
Komposch, S. ;
Kozela, A. ;
Kraft, A. ;
Krempel, J. ;
Kuzniak, M. ;
Lauss, B. ;
Lefort, T. .
PHYSICAL REVIEW LETTERS, 2020, 124 (08)
[3]   Planck 2018 results: VI. Cosmological parameters [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Challinor, A. ;
Chiang, H. C. ;
Chluba, J. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[4]   A quantum enhanced search for dark matter axions [J].
Backes, K. M. ;
Palken, D. A. ;
Al Kenany, S. ;
Brubaker, B. M. ;
Cahn, S. B. ;
Droster, A. ;
Hilton, Gene C. ;
Ghosh, Sumita ;
Jackson, H. ;
Lamoreaux, S. K. ;
Leder, A. F. ;
Lehnert, K. W. ;
Lewis, S. M. ;
Malnou, M. ;
Maruyama, R. H. ;
Rapidis, N. M. ;
Simanovskaia, M. ;
Singh, Sukhman ;
Speller, D. H. ;
Urdinaran, I ;
Vale, Leila R. ;
van Assendelft, E. C. ;
van Bibber, K. ;
Wang, H. .
NATURE, 2021, 590 (7845) :238-242
[5]   AXION STRING CONSTRAINTS [J].
BATTYE, RA ;
SHELLARD, EPS .
PHYSICAL REVIEW LETTERS, 1994, 73 (22) :2954-2957
[6]   GLOBAL STRING RADIATION [J].
BATTYE, RA ;
SHELLARD, EPS .
NUCLEAR PHYSICS B, 1994, 423 (01) :260-304
[7]  
Beurthey S, 2020, ARXIV200310894PHYSIC
[8]   Calculation of the axion mass based on high-temperature lattice quantum chromodynamics [J].
Borsanyi, S. ;
Fodor, Z. ;
Guenther, J. ;
Kampert, K. -H. ;
Katz, S. D. ;
Kawanai, T. ;
Kovacs, T. G. ;
Mages, S. W. ;
Pasztor, A. ;
Pittler, F. ;
Redondo, J. ;
Ringwald, A. ;
Szabo, K. K. .
NATURE, 2016, 539 (7627) :69-+
[9]   Extended Search for the Invisible Axion with the Axion Dark Matter Experiment [J].
Braine, T. ;
Cervantes, R. ;
Crisosto, N. ;
Du, N. ;
Kimes, S. ;
Rosenberg, L. J. ;
Rybka, G. ;
Yang, J. ;
Bowring, D. ;
Chou, A. S. ;
Khatiwada, R. ;
Sonnenschein, A. ;
Wester, W. ;
Carosi, G. ;
Woollett, N. ;
Duffy, L. D. ;
Bradley, R. ;
Boutan, C. ;
Jones, M. ;
LaRoque, B. H. ;
Oblath, N. S. ;
Taubman, M. S. ;
Clarke, J. ;
Dove, A. ;
Eddins, A. ;
O'Kelley, S. R. ;
Nawaz, S. ;
Siddiqi, I ;
Stevenson, N. ;
Agrawal, A. ;
Dixit, A., V ;
Gleason, J. R. ;
Jois, S. ;
Sikivie, P. ;
Solomon, J. A. ;
Sullivan, N. S. ;
Tanner, D. B. ;
Lentz, E. ;
Daw, E. J. ;
Buckley, J. H. ;
Harrington, P. M. ;
Henriksen, E. A. ;
Murch, K. W. .
PHYSICAL REVIEW LETTERS, 2020, 124 (10)
[10]  
Brun P, 2019, EUR PHYS J C, V79, DOI 10.1140/epjc/s10052-019-6683-x