Fisher information in Poissonian model neurons

被引:0
|
作者
Gross, Eitan Z. [1 ]
机构
[1] Stat Anal & Bioinformat, 211 Cambridge Pl Dr, Little Rock, AR 72227 USA
关键词
Fisher information; Mutual information; Poissonian neurons; Stam's inequality;
D O I
10.1016/j.physa.2019.123451
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mutual information (MI) is being widely used to analyze the neural code in a variety of stochastic neuronal sensory systems. Unfortunately, MI is analytically tractable only for simple coding problems. One way to address this difficulty is to relate MI to Fisher information which is relatively easier to compute and interpret with regard to neurophysiological parameters. The relationship between the two measures is not always clear and often depends on the probability distribution function that best describes the distribution of the noise. Using Stam's inequality we show here that deviations from Gaussianity in neuronal response distribution function can result in a large overestimation of MI, even in the small noise regime. This result is especially relevant when studying neural codes represented by Poissonian neurons. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Fisher information in k-records
    Hofmann, G
    Balakrishnan, N
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2004, 56 (02) : 383 - 396
  • [42] Optical resolution from Fisher information
    L. Motka
    B. Stoklasa
    M. D’Angelo
    P. Facchi
    A. Garuccio
    Z. Hradil
    S. Pascazio
    F. V. Pepe
    Y. S. Teo
    J. Řeháček
    L. L. Sánchez-Soto
    The European Physical Journal Plus, 131
  • [43] Exergy and Fisher Information as ecological indices
    Fath, BD
    Cabezas, H
    ECOLOGICAL MODELLING, 2004, 174 (1-2) : 25 - 35
  • [45] DYNAMICS OF FISHER INFORMATION IN KERR MEDIUM
    Abdel-Khalek, S.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (08) : 1541 - 1548
  • [46] Fisher information of orthogonal polynomials I
    Dominici, Diego
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (06) : 1511 - 1518
  • [47] Fisher information of orthogonal hypergeometric polynomials
    Sánchez-Ruiz, J
    Dehesa, JS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (01) : 150 - 164
  • [48] Fisher information and the fourth moment theorem
    Nourdin, Ivan
    Nualart, David
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02): : 849 - 867
  • [49] Fisher information lower bounds for sampling
    Chewi, Sinho
    Gerber, Patrik
    Lee, Holden
    Lu, Chen
    INTERNATIONAL CONFERENCE ON ALGORITHMIC LEARNING THEORY, VOL 201, 2023, 201 : 375 - 410
  • [50] THE ESTIMATION OF PRIOR FROM FISHER INFORMATION
    LI YUANZHANG
    K.M. LAL SAXENA AND QIANG WENJIU
    Applied Mathematics:A Journal of Chinese Universities(Series B), 1994, (02) : 109 - 120