Approximation in L2 Sobolev spaces on the 2-sphere by quasi-interpolation

被引:5
作者
Gomes, SM
Kushpel, AK
Levesley, J
机构
[1] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
[2] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
关键词
quasi-interpolation; Sobolev spaces; approximation;
D O I
10.1007/BF02511814
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we consider a simple method of radial quasi-interpolation by polynomials on the unit sphere in R-3, and present rates of convergence for this method in Sobolev spaces of square integrable functions. We write the discrete Fourier series as a quasi-interpolant and hence obtain convergence rates, in the aforementioned Sobolev spaces, for the discrete Fourier projection. we also discuss some typical practical examples used in the context of spherical wavelets.
引用
收藏
页码:283 / 295
页数:13
相关论文
共 18 条
[1]  
[Anonymous], 1959, AM MATH SOC C PUBLIC
[2]  
[Anonymous], 1998, CONSTR APPROX
[3]  
BOMMERHOLZ, 1996, MATH RES, V101, P255
[4]   COMPUTING FOURIER-TRANSFORMS AND CONVOLUTIONS ON THE 2-SPHERE [J].
DRISCOLL, JR ;
HEALY, DM .
ADVANCES IN APPLIED MATHEMATICS, 1994, 15 (02) :202-250
[5]  
Erdelyi A., 1953, HIGHER TRANSCENDENTA, V2
[6]  
Fasshauer GE, 1998, INNOV APPL MATH, P117
[7]   Combined spherical harmonic and wavelet expansion - A future concept in earth's gravitational determination [J].
Freeden, W ;
Windheuser, U .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1997, 4 (01) :1-37
[8]   SPECTRAL TRANSFORM SOLUTIONS TO THE SHALLOW-WATER TEST SET [J].
JAKOBCHIEN, R ;
HACK, JJ ;
WILLIAMSON, DL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 119 (01) :164-187
[9]   Quasi-interpolation on the 2-sphere using radial polynomials [J].
Kushpel, AK ;
Levesley, J .
JOURNAL OF APPROXIMATION THEORY, 2000, 102 (01) :141-154
[10]  
Muller C, 1966, LECT NOTES MATH, V17