Gradient-Structuring Manipulation in Ni3S2 Layer Boosts Solar Hydrogen Production of Si Photocathode in Alkaline Media

被引:13
作者
Chen, Cong [1 ]
Wang, Yongjie [2 ]
Nie, Chengming [3 ]
Shen, Junxia [1 ]
Wei, Zhihe [4 ]
Zou, Shuai [1 ]
Su, Xiaodong [1 ]
Fan, Ronglei [1 ]
Peng, Yang [4 ]
Shen, Mingrong [1 ]
机构
[1] Soochow Univ, Suzhou Nano Sci & Technol, Thin Films Collaborat Innovat Ctr, Jiangsu Key Lab,Sch Physical Sci & Technol, Suzhou 215006, Peoples R China
[2] Harbin Inst Technol, Sch Sci, Shenzhen 518000, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Mol React Dynam, Dalian 116023, Liaoning, Peoples R China
[4] Soochow Univ, Prov Key Lab Adv Carbon Mat & Wearable Energy Tec, Soochow Inst Energy & Mat Innovat, Coll Energy, Suzhou 215006, Peoples R China
基金
中国国家自然科学基金;
关键词
charge transfer; gradient-structuring; Ni; S-3; (2); Si photocathodes; solar hydrogen production; P-SILICON; N-CONTACTS; EFFICIENT; PERFORMANCE; EVOLUTION; ARRAYS; CATALYST; ELECTROCATALYSTS; HYDROXIDE;
D O I
10.1002/aenm.202102865
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using silicon as a photocathode has long been considered as an ideal pathway toward cost-effective photoelectrochemical (PEC) solar hydrogen production. However, the trade-off between charge transfer efficiency and stability severely restricts the practical application of Si-based PEC devices in alkaline media. Herein, a facile thermo-electrodeposition process to integrate a gradient-structuring Ni3S2 (G-Ni3SxO2-x) layer to simultaneously protect and act as a catalyst in Si photocathodes in alkaline solutions is reported. The G-Ni3SxO2-x layer not only provides abundant active sites for the hydrogen evolution reaction but also promotes the charge separation and transport and mass transfer. Consequently, the as-fabricated Si photocathodes exhibit an excellent PEC activity under simulated AM1.5G illumination with a high onset potential of 0.39 V versus reversible hydrogen electrode (RHE) and a photocurrent density of -33.8 mA cm(-2) at 0 V versus RHE, outperforming the state-of-the-art p-Si based photocathodes. Moreover, the G-Ni3SxO2-x layer possesses a good interfacial contact with the Si substrate with negligible stress at the G-Ni3SxO2-x/Si interface, affording a good durability of over 120 h at >30 mA cm(-2) in alkaline media. This gradient-structuring strategy paves new way for engineering highly efficient and durable PEC devices.
引用
收藏
页数:9
相关论文
共 73 条
[1]   Realization of freestanding InP membranes on Si by low-temperature wafer bonding and stress analysis using micro-Raman spectroscopy [J].
Arokiaraj, J. ;
Tripathy, S. ;
Vicknesh, S. ;
Ramam, A. .
APPLIED PHYSICS LETTERS, 2006, 88 (22)
[2]   Carrier-selective p- and n-contacts for efficient and stable photocatalytic water reduction [J].
Bae, Dowon ;
Pedersen, Thomas ;
Seger, Brian ;
Iandolo, Beniamino ;
Hansen, Ole ;
Vesborg, Peter C. K. ;
Chorkendorff, Ib .
CATALYSIS TODAY, 2017, 290 :59-64
[3]   Protection of Si photocathode using TiO2 deposited by high power impulse magnetron sputtering for H2 evolution in alkaline media [J].
Bae, Dowon ;
Shayestehaminzadeh, Seyedmohartitnad ;
Thorsteinsson, Einar B. ;
Pedersen, Thomas ;
Hansen, Ole ;
Seger, Brian ;
Vesborg, Peter C. K. ;
Olafsson, Sveinn ;
Chorkendorff, Ib .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 144 :758-765
[4]   Amorphous oxygen-rich molybdenum oxysulfide Decorated p-type silicon microwire Arrays for efficient photoelectrochemical water reduction [J].
Bao, Xiao-Qing ;
Petrovykh, Dmitri Y. ;
Alpuim, Pedro ;
Stroppa, Daniel G. ;
Guldris, Noelia ;
Fonseca, Helder ;
Costa, Margaret ;
Gaspar, Joao ;
Jin, Chuanhong ;
Liu, Lifeng .
NANO ENERGY, 2015, 16 :130-142
[5]   Designing Active and Stable Silicon Photocathodes for Solar Hydrogen Production Using Molybdenum Sulfide Nanomaterials [J].
Benck, Jesse D. ;
Lee, Sang Chul ;
Fong, Kara D. ;
Kibsgaard, Jakob ;
Sinclair, Robert ;
Jaramillo, Thomas F. .
ADVANCED ENERGY MATERIALS, 2014, 4 (18)
[6]   Photoelectrochemical Hydrogen Evolution Using Si Microwire Arrays [J].
Boettcher, Shannon W. ;
Warren, Emily L. ;
Putnam, Morgan C. ;
Santori, Elizabeth A. ;
Turner-Evans, Daniel ;
Kelzenberg, Michael D. ;
Walter, Michael G. ;
McKone, James R. ;
Brunschwig, Bruce S. ;
Atwater, Harry A. ;
Lewis, Nathan S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (05) :1216-1219
[7]   Switchable Charge-Transfer in the Photoelectrochemical Energy-Conversion Process of Ferroelectric BiFeO3 Photoelectrodes [J].
Cao, Dawei ;
Wang, Zhijie ;
Nasori ;
Wen, Liaoyong ;
Mi, Yan ;
Lei, Yong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (41) :11027-11031
[8]   High-Performance Pt-Co Nanoframes for Fuel-Cell Electrocatalysis [J].
Chen, Shouping ;
Li, Mufan ;
Gao, Mengyu ;
Jin, Jianbo ;
van Spronsen, Matthijs A. ;
Salmeron, Miquel B. ;
Yang, Peidong .
NANO LETTERS, 2020, 20 (03) :1974-1979
[9]   Efficient Photoelectrochemical Hydrogen Generation Using Heterostructures of Si and Chemically Exfoliated Metallic MoS2 [J].
Ding, Qi ;
Meng, Fei ;
English, Caroline R. ;
Caban-Acevedo, Miguel ;
Shearer, Melinda J. ;
Liang, Dong ;
Daniel, Andrew S. ;
Hamers, Robert J. ;
Jin, Song .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (24) :8504-8507
[10]   Highly efficient and stable Si photocathode with hierarchical MoS2/Ni3S2 catalyst for solar hydrogen production in alkaline media [J].
Fan, Ronglei ;
Zhou, Ju ;
Xun, Wei ;
Cheng, Shaobo ;
Vanka, Srinivas ;
Cai, Tianyi ;
Ju, Sheng ;
Mi, Zetian ;
Shen, Mingrong .
NANO ENERGY, 2020, 71