On the nonlinear modeling of shot noise

被引:36
作者
Eliazar, I [1 ]
Klafter, J
机构
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
[2] Tel Aviv Univ, Sch Chem, Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
关键词
Poisson processes; Levy processes; Ornstein-Uhlenbeck dynamics; Noah effect; Joseph effect;
D O I
10.1073/pnas.0506816102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduced a nonlinear shot-noise model, a natural generalization of the "classic" shot-noise model, which differs markedly from the existing linear shot-noise models. This model produces a wide spectrum of stationary noise processes. Because of its intrinsic nonlinearity, the model's resulting noise processes are capable of displaying a rich variety of both amplitudal and temporal statistical behaviors. Surprisingly, the nonlinear model is amenable to mathematical analysis and yields closed-form formulae for the characterizing statistics of its resulting noise processes.
引用
收藏
页码:13779 / 13782
页数:4
相关论文
共 28 条
[1]  
Adler RJ, 1998, PRACTICAL GUIDE TO HEAVY TAILS, P133
[2]  
[Anonymous], 1993, COURSE POINT PROCESS
[3]  
Bertoin J., 1996, Levy Processes
[4]  
Bingham N. H., 1987, Regular Variation
[5]  
Campbell N, 1910, P CAMB PHILOS SOC, V15, P310
[6]  
CAMPBELL NR, 1909, P CAMBRIDGE PHIL SOC, V15, P117
[7]   Bifurcation, bimodality, and finite variance in confined Levy flights [J].
Chechkin, AV ;
Klafter, J ;
Gonchar, VY ;
Metzler, R ;
Tanatarov, LV .
PHYSICAL REVIEW E, 2003, 67 (01) :4
[8]  
Davenport W.B., 1958, An Introduction to the Theory of Random Signals and Noise, V159
[9]  
Doob J.L., 1953, Stochastic processes
[10]   Levy, Ornstein-Uhlenbeck, and subordination: Spectral vs. jump description [J].
Eliazar, I ;
Klafter, J .
JOURNAL OF STATISTICAL PHYSICS, 2005, 119 (1-2) :165-196