Influence of Cu(111) and Ni(111) Substrates on the Capacitances of Monolayer and Bilayer Graphene Supercapacitor Electrodes

被引:10
作者
Elshazly, Mohamed K. [1 ]
Chang, Jin Hyun [2 ]
Huzayyin, Ahmed [1 ,3 ]
Dawson, Francis [1 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada
[2] Tech Univ Denmark, Dept Energy Convers & Storage, DK-2800 Lyngby, Denmark
[3] Cairo Univ, Elect Power & Machines Dept, Giza 12316, Egypt
基金
加拿大自然科学与工程研究理事会;
关键词
QUANTUM CAPACITANCE; DOPED GRAPHENE; NITROGEN; PERFORMANCE;
D O I
10.1021/acs.jpcc.8b11211
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The quantum capacitance model based on graphene's fixed-band density of states (DOS) is one of the most popular approaches to modeling the capacitive behavior of graphene-based supercapacitor electrodes. This model, however, consistently over-estimates the capacitance of graphene electrodes by an order of magnitude compared to experimental measurements. Moreover, the influence of conducting substrates used as electrical contacts for graphene is typically excluded altogether by its representation as an infinite capacitance connected in series with the quantum capacitance of pristine graphene. This is despite the significant change in the electrode's total DOS because of graphene's adsorption to the substrate. Using insights from density functional theory calculations, we present a general model for calculating electrode capacitance based on space charge distribution in graphene-metal junctions. The model predicts capacitance values ranging between 1.4 and 1.7 mu F cm(-2) for graphene on Cu(111) and Ni(111), which match closely with the experimentally reported range of 2-6 mu F cm(-2). The model also predicts a constant capacitance for monolayer and bilayer graphene on Cu(111) and Ni(111), which challenges the popular assumption that the slightly field-tunable capacitance observed in practical supercapacitors can be attributed to the quantum capacitance of graphene in isolation from interactions with substrates and electrolytes.
引用
收藏
页码:2783 / 2791
页数:9
相关论文
共 37 条
[1]   Dipole correction for surface supercell calculations [J].
Bengtsson, L .
PHYSICAL REVIEW B, 1999, 59 (19) :12301-12304
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[4]   Quantum Capacitance of Aryldiazonium Modified Large Area Few-Layer Graphene Electrodes [J].
Brooksby, Paula A. ;
Farquhar, Anna K. ;
Dykstra, Haidee M. ;
Waterland, Mark R. ;
Downard, Alison J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (46) :25778-25785
[5]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[6]   Quantum capacitance of graphene in contact with metal [J].
Chang, Jin Hyun ;
Huzayyin, Ahmed ;
Lian, Keryn ;
Dawson, Francis .
APPLIED PHYSICS LETTERS, 2015, 107 (19)
[7]   Measuring the Capacitance at Few- and Many-Layered Graphene Electrodes in Aqueous Acidic Solutions [J].
Downard, Alison J. ;
Farquhar, Anna K. ;
Brooksby, Paula A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (11) :6103-6108
[8]   A review of large-area bilayer graphene synthesis by chemical vapor deposition [J].
Fang, Wenjing ;
Hsu, Allen L. ;
Song, Yi ;
Kong, Jing .
NANOSCALE, 2015, 7 (48) :20335-20351
[9]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[10]  
Jackson J.D., 2001, Classical Electrodynmaics, VThird