Synthesis of hollow Co3O4 nanocrystals in situ anchored on holey graphene for high rate lithium-ion batteries

被引:109
作者
Wu, Diben [1 ]
Wang, Chao [1 ]
Wu, Huijie [2 ]
Wang, Shuo [1 ]
Wang, Fengqian [1 ]
Chen, Zhuan [1 ]
Zhao, Tianbao [1 ]
Zhang, Zongyang [1 ]
Zhang, Lian Ying [1 ,3 ]
Li, Chang Ming [3 ,4 ]
机构
[1] Qingdao Univ, Sch Mat Sci & Engn, Inst Mat Energy & Environm, State Key Lab Biofibers & Ecotext, Qingdao 266071, Peoples R China
[2] Chongqing Univ Arts & Sci, Res Inst New Mat Technol, Chongqing 400715, Peoples R China
[3] Southwest Univ, Inst Clean Energy & Adv Mat, Chongqing Key Lab Adv Mat & Technol Clean Energie, Chongqing 400715, Peoples R China
[4] Qingdao Univ, Coll Life Sci, Inst Cross Field Sci, Qingdao 266071, Peoples R China
关键词
PERFORMANCE ANODE MATERIAL; NATURAL GRAPHITE; COMPOSITE; OXIDE; ELECTRODE; NANOPARTICLES; ARCHITECTURES; FABRICATION; NANOFIBERS; DENSITY;
D O I
10.1016/j.carbon.2020.03.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tailoring the electrode structure and morphology with short diffusion distance for fast ions transport is of significant to improve rate capability for advanced lithium-ion batteries. A novel architecture of hollow Co3O4 nanocrystals in situ anchored on holey graphene is successfully fabricated, and individual hollow Co3O4 nanocrystal is located around one etched hole on graphene sheets. This newly fabricated nanostructure is able to greatly shorten mass diffusion distance for enhancement of Li ion transport, resulting in the best rate performance among previously reported composites of Co3O4 and graphene. This work reveals that high rate lithium-ion batteries can be achieved through constructing the hybrids of Co3O4 nanocrystals on in situ etched holey graphene, while rendering fundamental for enhancement of mass transport rate by highly shortened ions diffusion distance in a nanostructured electrode to accomplish superior rate capability. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:137 / 144
页数:8
相关论文
共 68 条
[1]   Achieving high gravimetric energy density for flexible lithium-ion batteries facilitated by core-double-shell electrodes [J].
Balogun, Muhammad-Sadeeq ;
Yang, Hao ;
Luo, Yang ;
Qiu, Weitao ;
Huang, Yongchao ;
Liu, Zhao-Qing ;
Tong, Yexiang .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (07) :1859-1869
[2]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[3]   Metal etching method for preparing porous graphene as high performance anode material for lithium-ion batteries [J].
Cao, Hailiang ;
Zhou, Xufeng ;
Zheng, Chao ;
Liu, Zhaoping .
CARBON, 2015, 89 :41-46
[4]   Hierarchical three-dimensional flower-like Co3O4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries [J].
Cao, Wenqiang ;
Wang, Wenzhong ;
Shi, Honglong ;
Wang, Jun ;
Cao, Maosheng ;
Liang, Yujie ;
Zhu, Min .
NANO RESEARCH, 2018, 11 (03) :1437-1446
[5]  
Cassagneau T, 1998, ADV MATER, V10, P877, DOI 10.1002/(SICI)1521-4095(199808)10:11<877::AID-ADMA877>3.0.CO
[6]  
2-1
[7]   Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries [J].
Chen, Shuang Qiang ;
Wang, Yong .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (43) :9735-9739
[8]   Hydrothermal preparation of Co3O4/graphene composite as anode material for lithium-ion batteries [J].
Chi, Xiannian ;
Chang, Ling ;
Xie, Dong ;
Zhang, Jun ;
Du, Gaohui .
MATERIALS LETTERS, 2013, 106 :178-181
[9]   3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection [J].
Dong, Xiao-Chen ;
Xu, Hang ;
Wang, Xue-Wan ;
Huang, Yin-Xi ;
Chan-Park, Mary B. ;
Zhang, Hua ;
Wang, Lian-Hui ;
Huang, Wei ;
Chen, Peng .
ACS NANO, 2012, 6 (04) :3206-3213
[10]   Atomic Layer-by-Layer Co3O4/Graphene Composite for High Performance Lithium-Ion Batteries [J].
Dou, Yuhai ;
Xu, Jiantie ;
Ruan, Boyang ;
Liu, Qiannan ;
Pan, Yuede ;
Sun, Ziqi ;
Dou, Shi Xue .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)