Bottom-Up Silicon Nanowire Arrays for Thermoelectric Harvesting

被引:9
|
作者
Calaza, C. [1 ]
Salleras, M. [1 ]
Davila, D. [1 ]
Tarancon, A. [2 ]
Morata, A. [2 ]
Santos, J. D. [2 ]
Gadea, G. [2 ]
Fonseca, L. [1 ]
机构
[1] CSIC, Ctr Nacl Microelect, Inst Microelect Barcelona, Barcelona 08193, Spain
[2] Catalonia Inst Energy Res IREC, Dept Adv Mat Energy Applicat, Barcelona 08930, Spain
关键词
Silicon nanowires; Thermoelectricity; Thermal conductivity; Seebeck coefficient; Thermoelectric microgenerators;
D O I
10.1016/j.matpr.2015.05.085
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ordered dense arrays of p-type Si nanowires produced with a VLS method have been surveyed as a new active material to produce all-Si thermoelectric energy harvesters. The thermoelectric properties of the meta-material consisting of bundles of thousands of 10 mu m long Si nanowires (with a mean diameter of 100 nm) were measured making use of an integrated self-test element (heater/thermometer) that allows an accurate control of the temperature gradient in the silicon micromachined structure used to assemble the thermocouples. The measured Seebeck coefficient S and thermal conductivity k together with the resistivity reported in literature for similar boron doped Si nanowires suggest a ZT figure of merit at ambient temperature between 0.30 and 0.93, showing that proposed nanowire arrays can be a promising candidate for enhancing Si thermoelectric properties. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:675 / 679
页数:5
相关论文
共 50 条
  • [1] Bottom-up silicon nanowire-based thermoelectric microgenerators
    Davila, D.
    Huber, R.
    Hierold, C.
    15TH INTERNATIONAL CONFERENCE ON MICRO AND NANOTECHNOLOGY FOR POWER GENERATION AND ENERGY CONVERSION APPLICATIONS (POWERMEMS 2015), 2015, 660
  • [2] Bottom-up fabrication of diamond nanowire arrays
    Janssen, Wiebke
    Faby, Sebastian
    Gheeraert, Etienne
    DIAMOND AND RELATED MATERIALS, 2011, 20 (5-6) : 779 - 781
  • [3] Overview and status of bottom-up silicon nanowire electronics
    Fasoli, A.
    Milne, W. I.
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2012, 15 (06) : 601 - 614
  • [4] Fabrication and electrical characterization of bottom-up silicon nanowire resonators
    Sansa, Marc
    San Paulo, Alvaro
    Perez-Murano, Francesc
    2012 IEEE SENSORS PROCEEDINGS, 2012, : 620 - 623
  • [5] Electrical Characteristics of the Backgated Bottom-Up Silicon Nanowire FETs
    Kim, DukSoo
    Jung, YoungChai
    Park, MiYoung
    Kim, ByungSung
    Hong, SuHeon
    Choi, MinSu
    Kang, MyungGil
    Yu, YunSeop
    Whang, Dongmok
    Hwang, SungWoo
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2008, 7 (06) : 683 - 687
  • [6] Bottom-up assembly of large-area nanowire resonator arrays
    Li, Mingwei
    Bhiladvala, Rustom B.
    Morrow, Thomas J.
    Sioss, James A.
    Lew, Kok-Keong
    Redwing, Joan M.
    Keating, Christine D.
    Mayer, Theresa S.
    NATURE NANOTECHNOLOGY, 2008, 3 (02) : 88 - 92
  • [7] Bottom-up assembly of large-area nanowire resonator arrays
    Mingwei Li
    Rustom B. Bhiladvala
    Thomas J. Morrow
    James A. Sioss
    Kok-Keong Lew
    Joan M. Redwing
    Christine D. Keating
    Theresa S. Mayer
    Nature Nanotechnology, 2008, 3 : 88 - 92
  • [8] Characterization of heat flow in silicon nanowire arrays for efficient thermoelectric power harvesting
    Tahrim, Aqilah Abdul
    Ahmad, Anita
    Rahim, Ruzairi Abdul
    Ali, Mohamed Sultan Mohamed
    EXPERIMENTAL HEAT TRANSFER, 2018, 31 (06) : 470 - 481
  • [9] Bottom-up silicon nanoelectronics
    Mizuta, H
    Khalafalla, M
    Durrani, ZAK
    Uno, S
    Koshida, N
    Tsuchiya, Y
    Oda, S
    2004: 7TH INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUITS TECHNOLOGY, VOLS 1- 3, PROCEEDINGS, 2004, : 864 - 868
  • [10] Bottom-up grown nanowire quantum devices
    Bakkers, Erik
    MRS BULLETIN, 2019, 44 (05) : 403 - 409