Nodal solutions for the fractional Yamabe problem on Heisenberg groups

被引:8
作者
Kristaly, Alexandru [1 ,2 ]
机构
[1] Babes Bolyai Univ, Dept Econ, Cluj Napoca 400591, Romania
[2] Obuda Univ, Inst Appl Math, H-1034 Budapest, Hungary
关键词
CR fractional sub-Laplacian; nodal solution; Heisenberg group; EXTENSION PROBLEM; INEQUALITIES; REGULARITY; EQUATIONS;
D O I
10.1017/prm.2018.95
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the fractional Yamabe equation ${\rm {\cal L}}_\gamma u = \vert u \vert <^>{((4\gamma )/(Q-2\gamma ))}u$ on the Heisenberg group & x210d;(n) has [n + 1/2] sequences of nodal (sign-changing) weak solutions whose elements have mutually different nodal properties, where ${\rm {\cal L}}_\gamma $ denotes the CR fractional sub-Laplacian operator on & x210d;(n), Q = 2n + 2 is the homogeneous dimension of & x210d;(n), and $\gamma \in \bigcup\nolimits_{k = 1}<^>n [k,((kQ)/Q-1)))$. Our argument is variational, based on a Ding-type conformal pulling-back transformation of the original problem into a problem on the CR sphere S2n + 1 combined with a suitable Hebey-Vaugon-type compactness result and group-theoretical constructions for special subgroups of the unitary group U(n + 1).
引用
收藏
页码:771 / 788
页数:18
相关论文
共 23 条
[1]  
[Anonymous], MATH ITS APPL SOVIET
[2]  
Aubin T., 1982, Nonlinear Analysis on Manifolds
[3]   Lions-type compactness and Rubik actions on the Heisenberg group [J].
Balogh, Zoltan M. ;
Kristaly, Alexandru .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 48 (1-2) :89-109
[4]   INFINITELY MANY NONRADIAL SOLUTIONS OF A EUCLIDEAN SCALAR FIELD EQUATION [J].
BARTSCH, T ;
WILLEM, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 117 (02) :447-460
[5]  
Bartsch T, 2004, J REINE ANGEW MATH, V571, P131
[6]   Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere [J].
Branson, Thomas P. ;
Fontana, Luigi ;
Morpurgo, Carlo .
ANNALS OF MATHEMATICS, 2013, 177 (01) :1-52
[7]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53
[8]  
Caffarelli L., 2012, NONLINEAR PARTIAL DI, V7, P37, DOI DOI 10.1007/978-3-642-25361-4_3
[9]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[10]   Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Salsa, Sandro ;
Silvestre, Luis .
INVENTIONES MATHEMATICAE, 2008, 171 (02) :425-461