Using 3D-Printed Mesh-Like Brain Cortex with Deep Structures for Planning Intracranial EEG Electrode Placement

被引:8
作者
Javan, Ramin [1 ,2 ]
Schickel, Maureen [3 ]
Zhao, Yuanlong [2 ]
Agbo, Terry [2 ]
Fleming, Cullen [2 ]
Heidari, Parisa [1 ]
Gholipour, Taha [4 ]
Shields, Donald C. [5 ]
Koubeissi, Mohamad [4 ]
机构
[1] George Washington Univ Hosp, Dept Radiol, 900 23rd St NW,Suite G2092, Washington, DC 20037 USA
[2] George Washington Univ, Sch Med & Hlth Sci, Washington, DC 20052 USA
[3] Materialise USA, Plymouth, MI USA
[4] George Washington Univ Hosp, Dept Neurol, Washington, DC 20037 USA
[5] George Washington Univ Hosp, Dept Neurosurg, Washington, DC 20037 USA
关键词
3D printing; Deep electrode; Brain surface anatomy; Epilepsy; EEG; PRESURGICAL EVALUATION; RECONSTRUCTION; MODELS;
D O I
10.1007/s10278-019-00275-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Surgical evaluation of medically refractory epilepsy frequently necessitates implantation of multiple intracranial electrodes for the identification of the seizure focus. Knowledge of the individual brain's surface anatomy and deep structures is crucial for planning the electrode implantation. We present a novel method of 3D printing a brain that allows for the simulation of placement of all types of intracranial electrodes. We used a DICOM dataset of a T1-weighted 3D-FSPGR brain MRI from one subject. The segmentation tools of Materialise Mimics 21.0 were used to remove the osseous anatomy from brain parenchyma. Materialise 3-matic 13.0 was then utilized in order to transform the cortex of the segmented brain parenchyma into a mesh-like surface. Using 3-matic tools, the model was modified to incorporate deep brain structures and create an opening in the medial aspect. The final model was then 3D printed as a cerebral hemisphere with nylon material using selective laser sintering technology. The final model was light and durable and reflected accurate details of the surface anatomy and some deep structures. Additionally, standard surgical depth electrodes could be passed through the model to reach deep structures without damaging the model. This novel 3D-printed brain model provides a unique combination of visualizing both the surface anatomy and deep structures through the mesh-like surface while allowing repeated needle insertions. This relatively low-cost technique can be implemented for interdisciplinary preprocedural planning in patients requiring intracranial EEG monitoring and for any intervention that requires needle insertion into a solid organ with unique anatomy and internal targets.
引用
收藏
页码:324 / 333
页数:10
相关论文
共 29 条
[1]   Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education [J].
Bernhard, Jean-Christophe ;
Isotani, Shuji ;
Matsugasumi, Toru ;
Duddalwar, Vinay ;
Hung, Andrew J. ;
Suer, Evren ;
Baco, Eduard ;
Satkunasivam, Raj ;
Djaladat, Hooman ;
Metcalfe, Charles ;
Hu, Brian ;
Wong, Kelvin ;
Park, Daniel ;
Nguyen, Mike ;
Hwang, Darryl ;
Bazargani, Soroush T. ;
Abreu, Andre Luis de Castro ;
Aron, Monish ;
Ukimura, Osamu ;
Gill, Inderbir S. .
WORLD JOURNAL OF UROLOGY, 2016, 34 (03) :337-345
[2]   Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios [J].
Chepelev, Leonid ;
Wake, Nicole ;
Ryan, Justin ;
Althobaity, Waleed ;
Gupta, Ashish ;
Arribas, Elsa ;
Santiago, Lumarie ;
Ballard, David H ;
Wang, Kenneth C ;
Weadock, William ;
Ionita, Ciprian N ;
Mitsouras, Dimitrios ;
Morris, Jonathan ;
Matsumoto, Jane ;
Christensen, Andy ;
Liacouras, Peter ;
Rybicki, Frank J ;
Sheikh, Adnan .
3D Printing in Medicine, 2018, 4 (01)
[3]   Preoperative planning in pelvic and acetabular surgery: The value of advanced computerised planning modules [J].
Cimerman, Matej ;
Kristan, Anze .
INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2007, 38 (04) :442-449
[4]   EEG and MEG: Relevance to Neuroscience [J].
da Silva, Fernando Lopes .
NEURON, 2013, 80 (05) :1112-1128
[5]   Role of Subdural Interhemispheric Electrodes in Presurgical Evaluation of Epilepsy Patients [J].
Delev, Daniel ;
Send, Knut ;
Malter, Michael ;
Ormond, D. Ryan ;
Parpaley, Yaroslav ;
von Lehe, Marec ;
Schramm, Johannes ;
Grote, Alexander .
WORLD NEUROSURGERY, 2015, 84 (06) :1719-U282
[6]   Rapid prototyping of three-dimensional biomodels as an adjuvant in the surgical planning for intracranial aneurysms [J].
Erbano, Bruna Olandoski ;
Opolski, Ana Cristina ;
Olandoski, Marcia ;
Foggiatto, Jose Aguiomar ;
Kubrusly, Luiz Fernando ;
Dietz, Ulrich Andreas ;
Zini, Cassio ;
Makita Arantes Marinho, Melissa Mitsue ;
Leal, Andre Giacomelli ;
Ramina, Ricardo .
ACTA CIRURGICA BRASILEIRA, 2013, 28 (11) :756-761
[7]  
Hariz Marwan, 2014, Parkinsonism Relat Disord, V20 Suppl 1, pS192, DOI 10.1016/S1353-8020(13)70045-2
[8]   Intracranial video-EEG monitoring in presurgical evaluation of patients with refractory epilepsy [J].
Hupalo, Marlena ;
Wojcik, Rafal ;
Jaskolski, Dariusz J. .
NEUROLOGIA I NEUROCHIRURGIA POLSKA, 2017, 51 (03) :201-207
[9]   High-frequency oscillations (HFOs) in clinical epilepsy [J].
Jacobs, J. ;
Staba, R. ;
Asano, E. ;
Otsubo, H. ;
Wu, J. Y. ;
Zijlmans, M. ;
Mohamed, I. ;
Kahane, P. ;
Dubeau, F. ;
Navarro, V. ;
Gotman, J. .
PROGRESS IN NEUROBIOLOGY, 2012, 98 (03) :302-315
[10]   A Prototype Educational Model for Hepatobiliary Interventions: Unveiling the Role of Graphic Designers in Medical 3D Printing [J].
Javan, Ramin ;
Zeman, Merissa N. .
JOURNAL OF DIGITAL IMAGING, 2018, 31 (01) :133-143