On the convergence of an approximate deconvolution model to the 3D mean Boussinesq equations

被引:14
作者
Bisconti, Luca [1 ]
机构
[1] Univ Florence, Dipartimento Matemat & Informat U Dini, I-50139 Florence, Italy
关键词
Boussinesq equations; large eddy simulation; deconvolution models; SYSTEM;
D O I
10.1002/mma.3160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study an LES model for the approximation of large scales of the 3D Boussinesq equations. This model is obtained using the approach first described by Stolz and Adams, based on the VanCittern approximate deconvolution operators, and applied to the filtered Boussinesq equations. Existence and uniqueness of a regular weak solution are provided. Our main objective is to prove that this solution converges towards a solution of the filtered Boussinesq equations, as the deconvolution parameter goes to zero. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1437 / 1450
页数:14
相关论文
共 20 条
[1]  
Adams NA, 2001, MODERN SIMULATION STRATEGIES FOR TURBULENT FLOW, P21
[2]  
Berselli LC, 2006, SCI COMPUT, P1
[3]  
Berselli LC, BOUSSINESQ EQU UNPUB
[4]  
Berselli LC, 2011, METHODS APPL ANAL, V18, P391
[5]   Convergence of approximate deconvolution models to the mean magnetohydrodynamics equations: Analysis of two models [J].
Berselli, Luigi C. ;
Catania, Davide ;
Lewandowski, Roger .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) :864-880
[6]   Convergence of approximate deconvolution models to the mean Navier-Stokes equations [J].
Berselli, Luigi C. ;
Lewandowski, Roger .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (02) :171-198
[7]  
Chacon-Rebollo T., 2013, MATH NUMERICAL FDN T
[8]  
Doering C., 1995, APPL ANAL NAVIER STO
[9]   A note on regularity criterion for the 3D Boussinesq system with partial viscosity [J].
Fan, Jishan ;
Zhou, Yong .
APPLIED MATHEMATICS LETTERS, 2009, 22 (05) :802-805
[10]  
GUO BL, 1995, CHINESE ANN MATH B, V16, P379