The hydrophobic surface state of talc as influenced by aluminum substitution in the tetrahedral layer

被引:38
作者
Atluri, Venkata [1 ]
Jin, Jiaqi [1 ]
Shrimali, Kaustubh [1 ]
Dang, Liem [2 ]
Wang, Xuming [1 ]
Miller, Jan D. [1 ]
机构
[1] Univ Utah, Dept Met Engn, Coll Mines & Earth Sci, 135 S 1460 E,Room 412, Salt Lake City, UT 84112 USA
[2] Pacific Northwest Natl Lab, Phys Sci Div, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA
关键词
Hydrophobicity; Talc; Aluminum substitution; X-ray photoelectron spectroscopy (XPS); Bubble attachment; Molecular dynamics simulation (MDS); MOLECULAR-DYNAMICS SIMULATION; POLYSACCHARIDE DEPRESSANTS; REVERSE FLOTATION; INTERFACIAL WATER; DISSOLVED AIR; CORN STARCH; ADSORPTION; BASTNAESITE; HEMATITE; ISSUES;
D O I
10.1016/j.jcis.2018.10.085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Talc is both an important industrial mineral product recovered by flotation, and also in other cases, a gangue mineral of concern in the flotation of certain sulfide ores, such as the PGM ores from South Africa and from the United States. The talc face surface is naturally hydrophobic with a water sessile drop contact angle of nearly 80, which accounts for its flotation recovery in one case, and its contamination of sulfide mineral concentrates in other instances. Due to the presence of impurities in the talc structure the surface properties change. One such effect is the presence of aluminum, which can replace silicon in the silica tetrahedral layer of the talc structure. This results in a charge imbalance on the face surface because Si+4 is replaced by Al+3. Sessile drop contact angle and bubble attachment time measurements were made, and these results were compared to the results from molecular dynamics simulations (MDS). The extent of aluminum substitution in the silica tetrahedral layer was considered, and the sessile drop contact angle was found to decrease with increased aluminum content, decreasing from about 80 degrees for no substitution (talc) to 0 degrees for extensive substitution (phlogopite). The water film was found to be stable at the surface of highly aluminum substituted crystals due to the interaction between water molecules and the increased polarity of the surface state. This stable water film restricts the air bubble from attaching to such face surfaces. However, in the absence of aluminum substitution, no interactions between the water molecules and the face surface were observed and the air bubble readily attached to the face surface. This study provides additional understanding of how aluminum substitution in the tetrahedral layer affects the fundamental surface properties of talc, paving the way for the design of improved reagents for talc flotation as an industrial mineral product, and for talc depression in the recovery of sulfide mineral concentrates. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:737 / 748
页数:12
相关论文
共 34 条
[2]  
Atluri V., 2019, MINING METALLURGY EX
[3]   The effect of polysaccharides and polyacrylamides on the depression of talc and the flotation of sulphide minerals [J].
Beattie, DA ;
Huynh, L ;
Kaggwa, GBN ;
Ralston, J .
MINERALS ENGINEERING, 2006, 19 (6-8) :598-608
[4]  
Bulatovic SM, 2007, HANDBOOK OF FLOTATION REAGENTS: CHEMISTRY, THEORY AND PRACTICE: FLOTATION OF SULFIDES ORES, VOL 1, P1
[5]   Presence of negative charge on the basal planes of New York talc [J].
Burdukova, E. ;
Becker, M. ;
Bradshaw, D. J. ;
Laskowski, J. S. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 315 (01) :337-342
[6]   Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field [J].
Cygan, RT ;
Liang, JJ ;
Kalinichev, AG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (04) :1255-1266
[7]   A molecular dynamics simulation study of water structure and adsorption states at talc surfaces [J].
Du, Hao ;
Miller, J. D. .
INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 2007, 84 (1-4) :172-184
[8]  
Jin J, 2018, PHYSICOCHEM PROB MIN, V54
[9]   Molecular dynamics simulation and analysis of interfacial water at selected sulfide mineral surfaces under anaerobic conditions [J].
Jin, Jiaqi ;
Miller, Jan D. ;
Dang, Liem X. .
INTERNATIONAL JOURNAL OF MINERAL PROCESSING, 2014, 128 :55-67
[10]   The influence of polymer structure and morphology on talc wettability [J].
Kaggwa, GB ;
Huynh, L ;
Ralston, J ;
Bremmell, K .
LANGMUIR, 2006, 22 (07) :3221-3227