Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses

被引:232
作者
Anfray, Clement [1 ]
Ummarino, Aldo [2 ]
Torres Andon, Fernando [1 ,3 ]
Allavena, Paola [1 ]
机构
[1] IRCCS Ist Clin Humanitas, Via A Manzoni 56, I-20089 Milan, Italy
[2] Humanitas Univ, Via Rita Levi Montalcini 4, I-20090 Milan, Italy
[3] Univ Santiago de Compostela, Ctr Res Mol Med & Chron Dis CIMUS, Campus Vida, Santiago De Compostela 15706, Spain
关键词
tumor-associated macrophages; immune system; tumor microenvironment; immune suppression; cancer immunotherapy; clinical trials; RECEPTOR TYROSINE KINASES; COLONY-STIMULATING FACTOR; MYELOID CELLS; MICROENVIRONMENTAL REGULATION; THERAPEUTIC RESISTANCE; CANCER; BLOCKADE; EXPRESSION; INHIBITION; POLARIZATION;
D O I
10.3390/cells9010046
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Established evidence demonstrates that tumor-infiltrating myeloid cells promote rather than stop-cancer progression. Tumor-associated macrophages (TAMs) are abundantly present at tumor sites, and here they support cancer proliferation and distant spreading, as well as contribute to an immune-suppressive milieu. Their pro-tumor activities hamper the response of cancer patients to conventional therapies, such as chemotherapy or radiotherapy, and also to immunotherapies based on checkpoint inhibition. Active research frontlines of the last years have investigated novel therapeutic strategies aimed at depleting TAMs and/or at reprogramming their tumor-promoting effects, with the goal of re-establishing a favorable immunological anti-tumor response within the tumor tissue. In recent years, numerous clinical trials have included pharmacological strategies to target TAMs alone or in combination with other therapies. This review summarizes the past and current knowledge available on experimental tumor models and human clinical studies targeting TAMs for cancer treatment.
引用
收藏
页数:24
相关论文
共 153 条
[1]   Bone marrow derived myeloid cells orchestrate antiangiogenic resistance in glioblastoma through coordinated molecular networks [J].
Achyut, B. R. ;
Shankar, Adarsh ;
Iskander, A. S. M. ;
Ara, Roxan ;
Angara, Kartik ;
Zeng, Peng ;
Knight, Robert A. ;
Scicli, Alfonso G. ;
Arbab, Ali S. .
CANCER LETTERS, 2015, 369 (02) :416-426
[2]   CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma [J].
Advani, Ranjana ;
Flinn, Ian ;
Popplewell, Leslie ;
Forero, Andres ;
Bartlett, Nancy L. ;
Ghosh, Nilanjan ;
Kline, Justin ;
Roschewski, Mark ;
LaCasce, Ann ;
Collins, Graham P. ;
Thu Tran ;
Lynn, Judith ;
Chen, James Y. ;
Volkmer, Jens-Peter ;
Agoram, Balaji ;
Huang, Jie ;
Majeti, Ravindra ;
Weissman, Irving L. ;
Takimoto, Chris H. ;
Chao, Mark P. ;
Smith, Sonali M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (18) :1711-1721
[3]   Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment [J].
Allavena, P. ;
Mantovani, A. .
CLINICAL AND EXPERIMENTAL IMMUNOLOGY, 2012, 167 (02) :195-205
[4]   Targeting Macrophage-Recruiting Chemokines as a Novel Therapeutic Strategy to Prevent the Progression of Solid Tumors [J].
Argyle, David ;
Kitamura, Takanori .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[5]   In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy [J].
Arlauckas, Sean P. ;
Garris, Christopher S. ;
Kohler, Rainer H. ;
Kitaoka, Maya ;
Cuccarese, Michael F. ;
Yang, Katherine S. ;
Miller, Miles A. ;
Carlson, Jonathan C. ;
Freeman, Gordon J. ;
Anthony, Robert M. ;
Weissleder, Ralph ;
Pittet, Mikael J. .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (389)
[6]   Trabectedin Reveals a Strategy of Immunomodulation in Chronic Lymphocytic Leukemia [J].
Banerjee, Priyanka ;
Zhang, Ronghua ;
Ivan, Cristina ;
Galletti, Giovanni ;
Clise-Dwyer, Karen ;
Barbaglio, Federica ;
Scarfo, Lydia ;
Aracil, Miguel ;
Klein, Christian ;
Wierda, William ;
Plunkett, William ;
Caligaris-Cappio, Federico ;
Gandhi, Varsha ;
Keating, Michael J. ;
Bertilaccio, Maria Teresa S. .
CANCER IMMUNOLOGY RESEARCH, 2019, 7 (12) :2036-2051
[7]   CD40 Agonists Alter Tumor Stroma and Show Efficacy Against Pancreatic Carcinoma in Mice and Humans [J].
Beatty, Gregory L. ;
Chiorean, Elena G. ;
Fishman, Matthew P. ;
Saboury, Babak ;
Teitelbaum, Ursina R. ;
Sun, Weijing ;
Huhn, Richard D. ;
Song, Wenru ;
Li, Dongguang ;
Sharp, Leslie L. ;
Torigian, Drew A. ;
O'Dwyer, Peter J. ;
Vonderheide, Robert H. .
SCIENCE, 2011, 331 (6024) :1612-1616
[8]   Metabolic Reprogramming of Immune Cells in Cancer Progression [J].
Biswas, Subhra K. .
IMMUNITY, 2015, 43 (03) :435-449
[9]   Gliomas Promote Immunosuppression through Induction of B7-H1 Expression in Tumor-Associated Macrophages [J].
Bloch, Orin ;
Crane, Courtney A. ;
Kaur, Rajwant ;
Safaee, Michael ;
Rutkowski, Martin J. ;
Parsa, Andrew T. .
CLINICAL CANCER RESEARCH, 2013, 19 (12) :3165-3175
[10]   Effective cancer immunotherapy in mice by polyIC-imiquimod complexes and engineered magnetic nanoparticles [J].
Bocanegra Gondan, Ana Isabel ;
Ruiz-de-Angulo, Ane ;
Zabaleta, Aintzane ;
Gomez Blanco, Nina ;
Macarena Cobaleda-Siles, Beatriz ;
Jesus Garcia-Granda, Maria ;
Padro, Daniel ;
Llop, Jordi ;
Arnaiz, Blanca ;
Gato, Maria ;
Escors, David ;
Mareque-Rivas, Juan C. .
BIOMATERIALS, 2018, 170 :95-115