c-Nilpotent Multiplier of Finite p-Groups

被引:3
作者
Niroomand, Peyman [1 ]
Johari, Farangis [2 ]
Parvizi, Mohsen [2 ]
机构
[1] Damghan Univ, Sch Math & Comp Sci, Damghan, Iran
[2] Ferdowsi Univ Mashhad, Dept Pure Math, Mashhad, Razavi Khorasan, Iran
关键词
c-Nilpotent multiplier; Capability; p-Groups; SCHUR MULTIPLIER; TENSOR-PRODUCTS; BAER-INVARIANTS; INEQUALITIES; ORDER;
D O I
10.1007/s40840-019-00723-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to find some exact sequences on the c-nilpotent multiplier of a group G. We also give an upper bound for the c-nilpotent multiplier of finite p-groups and give the explicit structure of groups whose take the upper bound. Finally, we will get the exact structure of the c-nilpotent multiplier and determine c-capable groups in the class of extra-special and generalized extra-special p-groups. It lets us to have a vast improvement over the last results on this topic.
引用
收藏
页码:941 / 956
页数:16
相关论文
共 39 条
[2]  
Berkovich Y, 2008, DEGRUYTER EXPOS MATH, V47, P1, DOI 10.1515/9783110208238
[3]   ON THE ORDER OF THE COMMUTATOR SUBGROUP AND THE SCHUR MULTIPLIER OF A FINITE P-GROUP [J].
BERKOVICH, YG .
JOURNAL OF ALGEBRA, 1991, 144 (02) :269-272
[4]   GROUPS OCCURRING AS CENTER FACTOR GROUPS [J].
BEYL, FR ;
FELGNER, U ;
SCHMID, P .
JOURNAL OF ALGEBRA, 1979, 61 (01) :161-177
[5]   VANKAMPEN THEOREMS FOR DIAGRAMS OF SPACES [J].
BROWN, R ;
LODAY, JL .
TOPOLOGY, 1987, 26 (03) :311-335
[6]   SOME COMPUTATIONS OF NON-ABELIAN TENSOR-PRODUCTS OF GROUPS [J].
BROWN, R ;
JOHNSON, DL ;
ROBERTSON, EF .
JOURNAL OF ALGEBRA, 1987, 111 (01) :177-202
[7]   On the nilpotent multipliers of a group [J].
Burns, J ;
Ellis, G .
MATHEMATISCHE ZEITSCHRIFT, 1997, 226 (03) :405-428
[8]   Inequalities for Baer invariants of finite groups [J].
Burns, J ;
Graham, E .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (04) :385-391
[9]   On the Schur multiplier of p-groups [J].
Ellis, G .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (09) :4173-4177
[10]   On groups with a finite nilpotent upper central quotient [J].
Ellis, G .
ARCHIV DER MATHEMATIK, 1998, 70 (02) :89-96