Initial-Boundary Value Problem for the Camassa-Holm Equation with Linearizable Boundary Condition

被引:2
作者
de Monvel, Anne Boutet [1 ]
Shepelsky, Dmitry [2 ]
机构
[1] Univ Paris Diderot, Inst Math Jussieu, F-75013 Paris, France
[2] Inst Low Temp Phys, Div Math, UA-61103 Kharkov, Ukraine
关键词
initial boundary value problem; integrable system; Camassa-Holm; long time asymptotics; Riemann-Hilbert problem; linearizable boundary condition; NONLINEAR SCHRODINGER-EQUATION; SHALLOW-WATER EQUATION; LONG-TIME ASYMPTOTICS; KORTEWEG-DE-VRIES; RIEMANN-HILBERT APPROACH; HALF-LINE; EVOLUTION-EQUATIONS; PEAKED SOLITONS; FINITE INTERVAL; KDV EQUATION;
D O I
10.1007/s11005-010-0457-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a Riemann-Hilbert problem formalism for the initial boundary value problem for the Camassa-Holm equation on the half-line x > 0 with homogeneous Dirichlet boundary condition at x = 0. We show that, similarly to the problem on the whole line, the solution of this problem can be obtained in parametric form via the solution of a Riemann-Hilbert problem determined by the initial data via associated spectral functions. This allows us to apply the non-linear steepest descent method and to describe the large-time asymptotics of the solution.
引用
收藏
页码:123 / 141
页数:19
相关论文
共 42 条
[1]   Multipeakons and the classical moment problem [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
ADVANCES IN MATHEMATICS, 2000, 154 (02) :229-257
[2]  
Boutet de Monvel A., 2008, Math. Sci. Res. Inst. Publ, V55, P53
[3]   Global dissipative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ANALYSIS AND APPLICATIONS, 2007, 5 (01) :1-27
[4]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[5]  
Camassa R, 2005, J NONLINEAR MATH PHY, V12, P146, DOI 10.2991/jnmp.2005.12.Supplement 1.13
[6]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[7]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[8]  
Constantin A, 1999, COMMUN PUR APPL MATH, V52, P949, DOI 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO
[9]  
2-D
[10]   On the scattering problem for the Camassa-Holm equation [J].
Constantin, A .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2008) :953-970