Broadly neutralizing DNA vaccine with specific mutation alters the antigenicity and sugar-binding activities of influenza hemagglutinin

被引:19
作者
Chen, Ming-Wei [2 ,3 ]
Liao, Hsin-Yu [2 ,3 ]
Huang, Yaoxing [1 ]
Jan, Jia-Tsrong [3 ]
Huang, Chih-Cheng [4 ]
Ren, Chien-Tai [3 ]
Wu, Chung-Yi [3 ]
Cheng, Ting-Jen Rachel [3 ]
Ho, David D. [1 ]
Wong, Chi-Huey [3 ]
机构
[1] Rockefeller Univ, Aaron Diamond AIDS Res Ctr, New York, NY 10016 USA
[2] Natl Yang Ming Univ, Inst Biochem & Mol Biol, Taipei 112, Taiwan
[3] Acad Sinica, Genom Res Ctr, Taipei 115, Taiwan
[4] Council Agr, Anim Hlth Res Inst, Tanshui 25158, Taiwan
关键词
serotype; genotype; RECEPTOR-BINDING; VIRUS; IMMUNIZATION; ANTIBODY; ELECTROPORATION; IMMUNOGENICITY; DETERMINANTS; RECOGNITION; PROTECTION; RESIDUES;
D O I
10.1073/pnas.1019744108
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rapid genetic drift of influenza virus hemagglutinin is an obstacle to vaccine efficacy. Previously, we found that the consensus hemagglutinin DNA vaccine (pCHA5) can only elicit moderate neutralization activities toward the H5N1 clade 2.1 and clade 2.3 viruses. Two approaches were thus taken to improve the protection broadness of CHA5. The first one was to include certain surface amino acids that are characteristic of clade 2.3 viruses to improve the protection profiles. When we immunized mice with CHA5 harboring individual mutations, the antibodies elicited by CHA5 containing P157S elicited higher neutralizing activity against the clade 2.3 viruses. Likewise, the viruses pseudotyped with hemagglutinin containing 157S became more susceptible to neutralization. The second approach was to update the consensus sequence with more recent H5N1 strains, generating a second-generation DNA vaccine pCHA5II. We showed that pCHA5II was able to elicit higher cross-neutralization activities against all H5N1 viruses. Comparison of the neutralization profiles of CHA5 and CHA5II, and the animal challenge studies, revealed that CHA5II induced the broadest protection profile. We concluded that CHA5II combined with electroporation delivery is a promising strategy to induce antibodies with broad cross-reactivities against divergent H5N1 influenza viruses.
引用
收藏
页码:3510 / 3515
页数:6
相关论文
共 44 条
[1]   Electroporation for the Delivery of DNA-based Vaccines and Immunotherapeutics: Current Clinical Developments [J].
Bodles-Brakhop, Angela M. ;
Heller, Richard ;
Draghia-Akli, Ruxandra .
MOLECULAR THERAPY, 2009, 17 (04) :585-592
[2]   THE ANTIGENIC STRUCTURE OF THE INFLUENZA-VIRUS A/PR/8/34 HEMAGGLUTININ (H-1 SUBTYPE) [J].
CATON, AJ ;
BROWNLEE, GG ;
YEWDELL, JW ;
GERHARD, W .
CELL, 1982, 31 (02) :417-427
[3]   A consensus-hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses [J].
Chen, Ming-Wei ;
Cheng, Ting-Jen Rachel ;
Huang, Yaoxing ;
Jan, Jia-Tsrong ;
Ma, Shiou-Hwa ;
Yu, Alice L. ;
Wong, Chi-Huey ;
Ho, David D. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (36) :13538-13543
[4]   RECEPTOR SPECIFICITY IN HUMAN, AVIAN, AND EQUINE H2 AND H3 INFLUENZA-VIRUS ISOLATES [J].
CONNOR, RJ ;
KAWAOKA, Y ;
WEBSTER, RG ;
PAULSON, JC .
VIROLOGY, 1994, 205 (01) :17-23
[5]   Development of a new candidate H5N1 avian influenza virus for pre-pandemic vaccine production [J].
Dong, Jie ;
Matsuoka, Yumiko ;
Maines, Taronna R. ;
Swayne, David E. ;
O'Neill, Eduardo ;
Davis, C. Todd ;
Van-Hoven, Neal ;
Balish, Amanda ;
Yu, Hong-jie ;
Katz, Jacqueline M. ;
Klimov, Alexander ;
Cox, Nancy ;
Li, De-xin ;
Wang, Yu ;
Guo, Yuan-ji ;
Yang, Wei-zhong ;
Donis, Ruben O. ;
Shu, Yue-long .
INFLUENZA AND OTHER RESPIRATORY VIRUSES, 2009, 3 (06) :287-295
[6]   The structure and receptor binding properties of the 1918 influenza hemagglutinin [J].
Gamblin, SJ ;
Haire, LF ;
Russell, RJ ;
Stevens, DJ ;
Xiao, B ;
Ha, Y ;
Vasisht, N ;
Steinhauer, DA ;
Daniels, RS ;
Elliot, A ;
Wiley, DC ;
Skehel, JJ .
SCIENCE, 2004, 303 (5665) :1838-1842
[7]   A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity [J].
Glaser, L ;
Stevens, J ;
Zamarin, D ;
Wilson, IA ;
García-Sastre, A ;
Tumpey, TM ;
Basler, CF ;
Taubenberger, JK ;
Palese, P .
JOURNAL OF VIROLOGY, 2005, 79 (17) :11533-11536
[8]  
Hall TA., 1999, NUCL ACIDS S SERIES, V41, P95, DOI DOI 10.14344/IOC.ML.11.1
[9]   Influenza-pseudotyped Gag virus-like particle vaccines provide broad protection against highly pathogenic avian influenza challenge [J].
Haynes, Joel R. ;
Dokken, Leslie ;
Wiley, James A. ;
Cawthon, Andrew G. ;
Bigger, John ;
Harmsen, Allen G. ;
Richardson, Charles .
VACCINE, 2009, 27 (04) :530-541
[10]   HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 VIRAL-PROTEIN-R (VPR) ARRESTS CELLS IN THE G(2) PHASE OF THE CELL-CYCLE BY INHIBITING P34(CDC2) ACTIVITY [J].
HE, JL ;
CHOE, S ;
WALKER, R ;
DIMARZIO, P ;
MORGAN, DO ;
LANDAU, NR .
JOURNAL OF VIROLOGY, 1995, 69 (11) :6705-6711