Knowledge-driven segmentation of the central sulcus from human brain MR images

被引:0
|
作者
Zuo, W [1 ]
Hu, QM [1 ]
Aziz, A [1 ]
Loe, K [1 ]
Nowinski, WL [1 ]
机构
[1] Bioinformat Inst, Biomed Imaging Grp, Singapore, Singapore
来源
ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5 | 2004年
关键词
central sulcas; segmentation; MRI; human brain; neuroinformatics;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a knowledge-driven algorithm to identify and segment the central suclus (CS) from human brain MR images. The dataset is reformatted along the anterior and posterior commissures (AC-PC) plane first. Then, the 3D region within the two coronal planes passing through the AC and PC is defined as the region of interest (ROI) to search for all the sulci within it. The CS is the suclus with the largest volume within the ROI. Together with the sulci, grey matter (GM) is included for the region growing in order to deal with the partial volume effect. The GM is removed through skeletonization. Experimental results are given.
引用
收藏
页码:2443 / 2446
页数:4
相关论文
共 50 条
  • [1] Knowledge-driven automated extraction of the human cerebral ventricular system from MR images
    Xia, Y
    Hu, QM
    Aziz, A
    Nowinski, WL
    INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2003, 2732 : 270 - 281
  • [2] AN APPROACH TO KNOWLEDGE-DRIVEN SEGMENTATION
    HYDE, J
    FULLWOOD, JA
    CORRALL, DR
    IMAGE AND VISION COMPUTING, 1985, 3 (04) : 198 - 205
  • [3] Automated segmentation of brain exterior in MR images driven by empirical procedures and anatomical knowledge
    Worth, AJ
    Makris, N
    Meyer, JW
    Caviness, VS
    Kennedy, DN
    INFORMATION PROCESSING IN MEDICAL IMAGING, 1997, 1230 : 99 - 112
  • [4] Incorporating expert knowledge in Brain MR Images Segmentation
    Farzan, Ali
    Pour, Vahid Khalil
    Balafar, M. A.
    Razavi, Naser
    FUTURE INFORMATION TECHNOLOGY, 2011, 13 : 382 - 386
  • [5] Knowledge-Driven Metal Coating Defect Segmentation
    Xie Z.
    Shu C.
    Fu Y.
    Zhou J.
    Jiang J.
    Chen D.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2024, 53 (01): : 76 - 83
  • [6] TUMOR SEGMENTATION FROM SINGLE CONTRAST MR IMAGES OF HUMAN BRAIN
    Tang, Hui
    Lu, Huangxiang
    Liu, Weiping
    Tao, Xiaodong
    2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2015, : 46 - 49
  • [7] Automatic segmentation of the ventricular system from MR images of the human brain
    Schnack, HG
    Pol, HEH
    Baaré, WFC
    Viergever, MA
    Kahn, RS
    NEUROIMAGE, 2001, 14 (01) : 95 - 104
  • [8] Automatic segmentation of the caudate nucleus from human brain MR images
    Xia, Yan
    Bettinger, Keith
    Shen, Lin
    Reiss, Allan L.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (04) : 509 - 517
  • [9] Knowledge-driven understanding of images in comic books
    Christophe Rigaud
    Clément Guérin
    Dimosthenis Karatzas
    Jean-Christophe Burie
    Jean-Marc Ogier
    International Journal on Document Analysis and Recognition (IJDAR), 2015, 18 : 199 - 221
  • [10] Knowledge-driven understanding of images in comic books
    Rigaud, Christophe
    Guerin, Clement
    Karatzas, Dimosthenis
    Burie, Jean-Christophe
    Ogier, Jean-Marc
    INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2015, 18 (03) : 199 - 221