Gibbs measure for the periodic derivative nonlinear Schrodinger equation

被引:54
|
作者
Thomann, Laurent [1 ]
Tzvetkov, Nikolay [2 ]
机构
[1] Univ Nantes, Lab Math J Leray, UMR CNRS 6629, F-44322 Nantes 03, France
[2] Univ Cergy Pontoise, Dept Math, F-95302 Cergy Pontoise, France
关键词
INVARIANT-MEASURES;
D O I
10.1088/0951-7715/23/11/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we construct a Gibbs measure for the derivative Schrodinger equation on the circle. The construction uses some renormalizations of Gaussian series and Wiener chaos estimates, ideas which have already been used by the second author in a work on the Benjamin-Ono equation.
引用
收藏
页码:2771 / 2791
页数:21
相关论文
共 50 条
  • [1] Gibbs measures associated to the integrals of motion of the periodic derivative nonlinear Schrodinger equation
    Genovese, Giuseppe
    Luca, Renato
    Valeri, Daniele
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03): : 1663 - 1702
  • [2] Invariant measures for the periodic derivative nonlinear Schrodinger equation
    Genovese, Giuseppe
    Luca, Renato
    Valeri, Daniele
    MATHEMATISCHE ANNALEN, 2019, 374 (3-4) : 1075 - 1138
  • [3] Periodic and quasi-periodic solutions of a derivative nonlinear Schrodinger equation
    Liu, Jie
    APPLICABLE ANALYSIS, 2016, 95 (04) : 801 - 825
  • [4] Growth bound and nonlinear smoothing for the periodic derivative nonlinear Schrodinger equation
    Isom, Bradley
    Mantzavinos, Dionyssios
    Stefanov, Atanas
    MATHEMATISCHE ANNALEN, 2024, 388 (03) : 2289 - 2329
  • [5] Periodic Wave Solutions of Generalized Derivative Nonlinear Schrodinger Equation
    Zha Qi-Lao
    Li Zhi-Bin
    CHINESE PHYSICS LETTERS, 2008, 25 (11) : 3844 - 3847
  • [6] Localized Waves on the Periodic Background for the Derivative Nonlinear Schrodinger Equation
    Wu, Lifei
    Zhang, Yi
    Ye, Rusuo
    Jin, Jie
    NONLINEAR AND MODERN MATHEMATICAL PHYSICS, NMMP 2022, 2024, 459 : 335 - 347
  • [7] ON THE LIFESPAN OF STRONG SOLUTIONS TO THE PERIODIC DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Fujiwara, Kazumasa
    Ozawa, Tohru
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2018, 7 (02): : 275 - 280
  • [8] Periodic dynamics of a derivative nonlinear Schrodinger equation with variable coefficients
    Liu, Qihuai
    Liu, Wenye
    Torres, Pedro J.
    Huang, Wentao
    APPLICABLE ANALYSIS, 2020, 99 (03) : 407 - 427
  • [9] QUASI-PERIODIC SOLUTIONS FOR DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Gao, Meina
    Liu, Jianjun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) : 2101 - 2123
  • [10] KAM for the derivative nonlinear Schrodinger equation with periodic boundary conditions
    Liu, Jianjun
    Yuan, Xiaoping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) : 1627 - 1652