Optimal parent Hamiltonians for time-dependent states

被引:5
作者
Rattacaso, Davide [1 ]
Passarelli, Gianluca [1 ,2 ]
Mezzacapo, Antonio [3 ]
Lucignano, Procolo [1 ]
Fazio, Rosario [1 ,4 ]
机构
[1] Univ Napoli Federico II, Dipartimento Fis, I-80126 Naples, Italy
[2] CNR SPIN, Complesso Monte S Angelo,Via Cinthia, I-80126 Naples, Italy
[3] IBM TJ Watson Res Ctr, IBM Quantum, Yorktown Hts, NY 10598 USA
[4] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
关键词
QUANTUM; MODEL;
D O I
10.1103/PhysRevA.104.022611
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Given a generic time-dependent many-body quantum state, we determine the associated parent Hamiltonian. This procedure may require, in general, interactions of any sort. Enforcing the requirement of a fixed set of engineerable Hamiltonians, we find the optimal Hamiltonian once a set of realistic elementary interactions is defined. We provide three examples of this approach. We first apply the optimization protocol to the ground states of the one-dimensional Ising model and a ferromagnetic p-spin model but with time-dependent coefficients. We also consider a time-dependent state that interpolates between a product state and the ground state of a p-spin model. We determine the time-dependent optimal parent Hamiltonian for these states and analyze the capability of this Hamiltonian of generating the state evolution. Finally, we discuss the connections of our approach to shortcuts to adiabaticity.
引用
收藏
页数:16
相关论文
共 69 条
[1]   Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space [J].
An, Shuoming ;
Lv, Dingshun ;
del Campo, Adolfo ;
Kim, Kihwan .
NATURE COMMUNICATIONS, 2016, 7
[2]   RANDOM-PHASE APPROXIMATION IN THE THEORY OF SUPERCONDUCTIVITY [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 112 (06) :1900-1916
[3]   Learning the dynamics of open quantum systems from their steady states [J].
Bairey, Eyal ;
Guo, Chu ;
Poletti, Dario ;
Lindner, Netanel H. ;
Arad, Itai .
NEW JOURNAL OF PHYSICS, 2020, 22 (03)
[4]   Learning a Local Hamiltonian from Local Measurements [J].
Bairey, Eyal ;
Arad, Itai ;
Lindner, Netanel H. .
PHYSICAL REVIEW LETTERS, 2019, 122 (02)
[5]   Transitionless quantum driving [J].
Berry, M. V. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (36)
[6]   On learning Hamiltonian systems from data [J].
Bertalan, Tom ;
Dietrich, Felix ;
Mezic, Igor ;
Kevrekidis, Ioannis G. .
CHAOS, 2019, 29 (12)
[7]  
Bienias P., ARXIV210404453
[8]  
Boscain U., ARXIV201009368
[9]   Lieb-robinson bounds and the generation of correlations and topological quantum order [J].
Bravyi, S. ;
Hastings, M. B. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[10]   Control of quantum phenomena: past, present and future [J].
Brif, Constantin ;
Chakrabarti, Raj ;
Rabitz, Herschel .
NEW JOURNAL OF PHYSICS, 2010, 12