Learning causal Bayesian networks from incomplete observational data and interventions
被引:0
|
作者:
Borchani, Hanen
论文数: 0引用数: 0
h-index: 0
机构:
Inst Super Gest Tunis, LARODEC, 41 Ave La Liberte, Le Bardo 2000, TunisiaInst Super Gest Tunis, LARODEC, 41 Ave La Liberte, Le Bardo 2000, Tunisia
Borchani, Hanen
[1
]
Chaouachi, Maher
论文数: 0引用数: 0
h-index: 0
机构:
Inst Super Gest Tunis, LARODEC, 41 Ave La Liberte, Le Bardo 2000, TunisiaInst Super Gest Tunis, LARODEC, 41 Ave La Liberte, Le Bardo 2000, Tunisia
Chaouachi, Maher
[1
]
Ben Amor, Nahla
论文数: 0引用数: 0
h-index: 0
机构:
Inst Super Gest Tunis, LARODEC, 41 Ave La Liberte, Le Bardo 2000, TunisiaInst Super Gest Tunis, LARODEC, 41 Ave La Liberte, Le Bardo 2000, Tunisia
Ben Amor, Nahla
[1
]
机构:
[1] Inst Super Gest Tunis, LARODEC, 41 Ave La Liberte, Le Bardo 2000, Tunisia
来源:
SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS
|
2007年
/
4724卷
关键词:
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper proposes a new method for learning causal Bayesian networks from incomplete observational data and interventions. We extend our Greedy Equivalence Search-Expectation Maximization (GES-EM) algorithm [2], initially proposed to learn Bayesian networks from incomplete observational data, by adding a new step allowing the discovery of correct causal relationships using interventional data. Two intervention selection approaches are proposed: an adaptive one, where interventions are done sequentially and where the impact of each intervention is considered before starting the next one, and a non-adaptive one, where the interventions are executed simultaneously. An experimental study shows the merits of the new version of the GES-EM algorithm by comparing the two selection approaches.