FACILE PREDICTION OF NEUTROPHIL ACTIVATION STATE FROM MICROSCOPY IMAGES: A NEW DATASET AND COMPARATIVE DEEP LEARNING APPROACHES

被引:2
作者
Liao, Wei [1 ]
Ko, Ching-Yun [1 ]
Weng, Tsui-Wei [2 ]
Daniel, Luca [1 ]
Voldman, Joel [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Univ Calif San Diego, Halicioglu Data Sci Inst, La Jolla, CA 92093 USA
来源
2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022) | 2022年
关键词
Neutrophil activation; Deep learning; Sepsis; Microscopy; Regression;
D O I
10.1109/ISBI52829.2022.9761554
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The immune system protects its host from infection. Dysfunction of the immune system can cause autoimmune diseases and inflammatory diseases. Monitoring the immune system provides crucial information in informing treatment strategies and assessing the effect of therapies. While measures such as complete blood count to determine the leukocyte subsets are extensively used clinically, our ability to assess leukocyte function is limited, especially for the cells of the innate immune system, such as neutrophils. Here we introduce the idea of assessing neutrophil function from simpleto-obtain phase microscopy images. We developed an experimental pipeline using measurement of reactive oxygen species generation as a label of neutrophil function. We generated a large neutrophil imaging dataset and explored different deep learning approaches to predict neutrophil activation state. Our work demonstrates the potential of using deep learning models to evaluate functional aspects of the immune system, which could provide significant insight into immune disease prognostic monitoring that can be easily adapted to clinical settings.
引用
收藏
页数:5
相关论文
共 16 条
[1]   Morphological characterization of para- and proinflammatory neutrophil phenotypes using transmission electron microscopy [J].
Borenstein, Alon ;
Fine, Noah ;
Hassanpour, Siavash ;
Sun, Chunxiang ;
Oveisi, Morvarid ;
Tenenbaum, Howard C. ;
Glogauer, Michael .
JOURNAL OF PERIODONTAL RESEARCH, 2018, 53 (06) :972-982
[2]   Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation [J].
Hakkim, Abdul ;
Fuchs, Tobias A. ;
Martinez, Nancy E. ;
Hess, Simone ;
Prinz, Heino ;
Zychlinsky, Arturo ;
Waldmann, Herbert .
NATURE CHEMICAL BIOLOGY, 2011, 7 (02) :75-77
[3]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[4]   Image-to-Image Translation with Conditional Adversarial Networks [J].
Isola, Phillip ;
Zhu, Jun-Yan ;
Zhou, Tinghui ;
Efros, Alexei A. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5967-5976
[5]   Leukocyte function assessed via serial microlitre sampling of peripheral blood from sepsis patients correlates with disease severity [J].
Jundi, Bakr ;
Ryu, Hyunryul ;
Lee, Hyun ;
Abdulnour, Raja-Elie E. ;
Engstrom, Braden D. ;
Duvall, Melody G. ;
Higuera, Angelica ;
Pinilla-Vera, Mayra ;
Benson, Maura E. ;
Lee, Jaemyon ;
Krishnamoorthy, Nandini ;
Baron, Rebecca M. ;
Han, Jongyoon ;
Voldman, Joel ;
Levy, Bruce D. .
NATURE BIOMEDICAL ENGINEERING, 2019, 3 (12) :961-973
[6]   Morphological and flow-cytometric analysis of haemin-induced human neutrophil activation: implications for transfusion-related acute lung injury [J].
Kono, Mari ;
Saigo, Katsuyasu ;
Takagi, Yuri ;
Kawauchi, Sawako ;
Wada, Atsushi ;
Hashimoto, Makoto ;
Sugimoto, Takeshi ;
Takenokuchi, Mariko ;
Morikawa, Takashi ;
Funakoshi, Kunihiro .
BLOOD TRANSFUSION, 2013, 11 (01) :53-60
[7]   Least Squares Generative Adversarial Networks [J].
Mao, Xudong ;
Li, Qing ;
Xie, Haoran ;
Lau, Raymond Y. K. ;
Wang, Zhen ;
Smolley, Stephen Paul .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2813-2821
[8]   Neutrophil extracellular traps in immunity and disease [J].
Papayannopoulos, Venizelos .
NATURE REVIEWS IMMUNOLOGY, 2018, 18 (02) :134-147
[9]   Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study [J].
Rudd, Kristina E. ;
Johnson, Sarah Charlotte ;
Agesa, Kareha M. ;
Shackelford, Katya Anne ;
Tsoi, Derrick ;
Kievlan, Daniel Rhodes ;
Colombara, Danny V. ;
Ikuta, Kevin S. ;
Kissoon, Niranjan ;
Finfer, Simon ;
Fleischmann-Struzek, Carolin ;
Machado, Flavia R. ;
Reinhart, Konrad K. ;
Rowan, Kathryn ;
Seymour, Christopher W. ;
Watson, R. Scott ;
West, T. Eoin ;
Marinho, Fatima ;
Hay, Simon I. ;
Lozano, Rafael ;
Lopez, Alan D. ;
Angus, Derek C. ;
Murray, Christopher J. L. ;
Naghavi, Mohsen .
LANCET, 2020, 395 (10219) :200-211
[10]  
Schiff L., 2021, bioRxiv, V2020, DOI [DOI 10.1101/2020.11.13.380576, 10.1101/2020.11.13.380576]