Automatic Detection of Water Stress in Corn Using Image Processing and Deep Learning

被引:3
作者
Soffer, Mor [1 ]
Hadar, Ofer [1 ]
Lazarovitch, Naftali [2 ]
机构
[1] Ben Gurion Univ Negev, Sch Elect & Comp Engn, IL-8410501 Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Wyler Dept Dryland Agr, French Associates Inst Agr & Biotechnol Drylands, Sede Boqer Campus, IL-84990 Sede Boqer, Israel
来源
CYBER SECURITY CRYPTOGRAPHY AND MACHINE LEARNING | 2021年 / 12716卷
关键词
Water stress; Convolutional Neural Network; Long short Term Memory; Hierarchical classification;
D O I
10.1007/978-3-030-78086-9_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Water stress is one of the main environmental constraints that directly disrupts agriculture and global food supply, thus early and accurate detection of water stress is necessary in order to maintain high agricultural productivity. Using an image dataset collected during a dedicated experiment, we propose a new method for water stress level classification using deep learning and digital images only. Classification is performed in two stages, using a Convolutional Neural Network for spatial feature extraction and a Long Short-Term Memory for temporal features extraction. Outperforming all other methods examined, our model is able to classify five different levels of water stress with 91.7% accuracy and Mean Absolute Error of 0.1, and to detect changes in water stress levels during the day.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 50 条
[21]   Automatic Modulation Recognition using Deep Learning Architectures [J].
Zhang, Meng ;
Zeng, Yuan ;
Han, Zidong ;
Gong, Yi .
2018 IEEE 19TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2018, :281-285
[22]   Automatic Modulation Classification for CR Using Deep Learning [J].
Surendra Solanki ;
Banalaxmi Brahma ;
Yadvendra Pratap Singh .
SN Computer Science, 5 (8)
[23]   Automatic Classification of Lexical Stress in English and Arabic Languages using Deep Learning [J].
Shahin, Mostafa ;
Epps, Julien ;
Ahmed, Beena .
17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, :175-179
[24]   Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing [J].
de Paulo, Rodrigo Leme ;
Garcia, Angel Pontin ;
Umezu, Claudio Kiyoshi ;
de Camargo, Antonio Pires ;
Soares, Fabricio Theodoro ;
Albiero, Daniel .
SENSORS, 2023, 23 (03)
[25]   Indian fake currency detection using image processing and machine learning [J].
Sai Charan Deep Bandu ;
Murari Kakileti ;
Shyam Sunder Jannu Soloman ;
Nagaraju Baydeti .
International Journal of Information Technology, 2024, 16 (8) :4953-4966
[26]   Automatic Development of Deep Learning Architectures for Image Segmentation [J].
Nistor, Sergiu Cosmin ;
Ileni, Tudor Alexandru ;
Darabant, Adrian Sergiu .
SUSTAINABILITY, 2020, 12 (22) :1-18
[27]   Non-contact vibration sensor using deep learning and image processing [J].
Guo, Jinquan ;
Wu, Xinran ;
Liu, Jiantao ;
Wei, Tieping ;
Yang, Xiaoxiang ;
Yang, Xinyi ;
He, Bingwei ;
Zhang, Weihao .
MEASUREMENT, 2021, 183
[28]   A study on plant recognition using conventional image processing and deep learning approaches [J].
Pearline, S. Anubha ;
Kumar, V. Sathiesh ;
Harini, S. .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (03) :1997-2004
[29]   Detection of sitting posture using hierarchical image composition and deep learning [J].
Kulikajevas, Audrius ;
Maskeliunas, Rytis ;
Damasevicius, Robertas .
PEERJ COMPUTER SCIENCE, 2021, PeerJ Inc. (07) :1-20
[30]   Automatic Detection of Oil Spills from SAR Images Using Deep Learning [J].
Patel, Krishna ;
Bhatt, Chintan ;
Corchado, Juan M. .
AMBIENT INTELLIGENCE-SOFTWARE AND APPLICATIONS-13TH INTERNATIONAL SYMPOSIUM ON AMBIENT INTELLIGENCE, 2023, 603 :54-64