Artificial intelligence for prostate MRI: open datasets, available applications, and grand challenges

被引:35
作者
Sunoqrot, Mohammed R. S. [1 ,2 ]
Saha, Anindo [3 ]
Hosseinzadeh, Matin [3 ]
Elschot, Mattijs [1 ,2 ]
Huisman, Henkjan [1 ,3 ]
机构
[1] NTNU Norwegian Univ Sci & Technol, Dept Circulat & Med Imaging, N-7030 Trondheim, Norway
[2] Trondheim Reg & Univ Hosp, St Olays Hosp, Dept Radiol & Nucl Med, N-7030 Trondheim, Norway
[3] Radboud Univ Nijmegen, Med Ctr, Dept Med Imaging, Diagnost Image Anal Grp, NL-6525 GA Nijmegen, Netherlands
基金
芬兰科学院; 欧盟地平线“2020”;
关键词
Artificial intelligence; Deep learning; Image processing (computer-assisted); Multiparametric magnetic resonance imaging; Prostatic neoplasms; CANCER; SEGMENTATION; SYSTEM; DIAGNOSIS; IMPROVES;
D O I
10.1186/s41747-022-00288-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) for prostate magnetic resonance imaging (MRI) is starting to play a clinical role for prostate cancer (PCa) patients. AI-assisted reading is feasible, allowing workflow reduction. A total of 3,369 multi-vendor prostate MRI cases are available in open datasets, acquired from 2003 to 2021 in Europe or USA at 3 T (n = 3,018; 89.6%) or 1.5 T (n = 296; 8.8%), 346 cases scanned with endorectal coil (10.3%), 3,023 (89.7%) with phased-array surface coils; 412 collected for anatomical segmentation tasks, 3,096 for PCa detection/classification; for 2,240 cases lesions delineation is available and 56 cases have matching histopathologic images; for 2,620 cases the PSA level is provided; the total size of all open datasets amounts to approximately 253 GB. Of note, quality of annotations provided per dataset highly differ and attention must be paid when using these datasets (e.g., data overlap). Seven grand challenges and commercial applications from eleven vendors are here considered. Few small studies provided prospective validation. More work is needed, in particular validation on large-scale multi-institutional, well-curated public datasets to test general applicability. Moreover, AI needs to be explored for clinical stages other than detection/characterization (e.g., follow-up, prognosis, interventions, and focal treatment).
引用
收藏
页数:13
相关论文
共 80 条
  • [71] Artificial intelligence in radiology: 100 commercially available products and their scientific evidence
    van Leeuwen, Kicky G.
    Schalekamp, Steven
    Rutten, Matthieu J. C. M.
    van Ginneken, Bram
    de Rooij, Maarten
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (06) : 3797 - 3804
  • [72] Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT
    Venkadesh, Kiran Vaidhya
    Setio, Arnaud A. A.
    Schreuder, Anton
    Scholten, Ernst T.
    Chung, Kaman
    Wille, Mathilde M. W.
    Saghir, Zaigham
    van Ginneken, Bram
    Prokop, Mathias
    Jacobs, Colin
    [J]. RADIOLOGY, 2021, 300 (02) : 438 - 447
  • [73] Deep Learning Regression for Prostate Cancer Detection and Grading in Bi-Parametric MRI
    Vente, Coen de
    Vos, Pieter
    Hosseinzadeh, Matin
    Pluim, Josien
    Veta, Mitko
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (02) : 374 - 383
  • [74] Artificial intelligence and imaging biomarkers for prostate radiation therapy during and after treatment
    Wang, Yu-Feng
    Tadimalla, Sirisha
    Hayden, Amy J.
    Holloway, Lois
    Haworth, Annette
    [J]. JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2021, : 612 - 626
  • [75] PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2
    Weinreb, Jeffrey C.
    Barentsz, Jelle O.
    Choyke, Peter L.
    Cornud, Francois
    Haider, Masoom A.
    Macura, Katarzyna J.
    Margolis, Daniel
    Schnall, Mitchell D.
    Shtern, Faina
    Tempany, Clare M.
    Thoeny, Harriet C.
    Verma, Sadna
    [J]. EUROPEAN UROLOGY, 2016, 69 (01) : 16 - 40
  • [76] Reconsidering Prostate Cancer Mortality - The Future of PSA Screening
    Welch, H. Gilbert
    Albertsen, Peter C.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (16) : 1557 - 1563
  • [77] A Novel Deep Learning Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in Reading Biparametric Magnetic Resonance Images of the Prostate Results of a Multireader, Multicase Study
    Winkel, David J.
    Tong, Angela
    Lou, Bin
    Kamen, Ali
    Comaniciu, Dorin
    Disselhorst, Jonathan A.
    Rodriguez-Ruiz, Alejandro
    Huisman, Henkjan
    Szolar, Dieter
    Shabunin, Ivan
    Choi, Moon Hyung
    Xing, Pengyi
    Penzkofer, Tobias
    Grimm, Robert
    von Busch, Heinrich
    Boll, Daniel T.
    [J]. INVESTIGATIVE RADIOLOGY, 2021, 56 (10) : 605 - 613
  • [78] Autonomous Detection and Classification of PI-RADS Lesions in an MRI Screening Population Incorporating Multicenter-Labeled Deep Learning and Biparametric Imaging: Proof of Concept
    Winkel, David J.
    Wetterauer, Christian
    Matthias, Marc Oliver
    Lou, Bin
    Shi, Bibo
    Kamen, Ali
    Comaniciu, Dorin
    Seifert, Hans-Helge
    Rentsch, Cyrill A.
    Boll, Daniel T.
    [J]. DIAGNOSTICS, 2020, 10 (11)
  • [79] MSD-Net: Multi-Scale Discriminative Network for COVID-19 Lung Infection Segmentation on CT
    Zheng, Bingbing
    Liu, Yaoqi
    Zhu, Yu
    Yu, Fuli
    Jiang, Tianjiao
    Yang, Dawei
    Xu, Tao
    [J]. IEEE ACCESS, 2020, 8 : 185786 - 185795
  • [80] Zuley ML., 2016, **DATA OBJECT**, DOI 10.7937/K9/TCIA.2016.L4LTD3TK