Limit behavior of the solution to nonlinear viscoelastic Marguerre-von Karman shallow shell system

被引:33
作者
Li, Fushan [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Viscoelastic; Shallow shell; Plate; UNIFORM DECAY-RATES; BOUNDARY FEEDBACK; EQUATIONS; STABILIZATION; PLATE; DISSIPATION; MEMORY;
D O I
10.1016/j.jde.2010.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the nonlinear full Marguerre-von Karman shallow shell system with a dissipative mechanism of memory type. The model depends on one small parameter. The main purpose of this paper is to show that as the parameter approaches zero, the limiting system is the well-known full von Karman model with memory for thin plates. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1241 / 1257
页数:17
相关论文
共 26 条
[11]  
LAGNESE J, 1989, SIAM STUD APPL MATH, V10
[12]   UNIFORM ASYMPTOTIC ENERGY ESTIMATES FOR SOLUTIONS OF THE EQUATIONS OF DYNAMIC PLANE ELASTICITY WITH NONLINEAR DISSIPATION AT THE BOUNDARY [J].
LAGNESE, JE .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (01) :35-54
[13]   UNIFORM STABILIZATION OF A NONLINEAR BEAM BY NONLINEAR BOUNDARY FEEDBACK [J].
LAGNESE, JE ;
LEUGERING, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (02) :355-388
[14]   Uniform decay rates for full von Karman system of dynamic thermoelasticity with free boundary conditions and partial boundary dissipation [J].
Lasiecka, I .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (9-10) :1801-1847
[15]   Uniform stabilizability of a full von Karman system with nonlinear boundary feedback [J].
Lasiecka, I .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (04) :1376-1422
[16]  
Lasiecka I., 1998, APPL ANAL, V68, P121
[17]  
Li FS, 2003, ASYMPTOTIC ANAL, V36, P21
[18]   Convergence of the solution to general viscoelastic Koiter shell equations [J].
Li, Fu Shan .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (09) :1683-1688
[19]  
[李傅山 LI Fushan], 2007, [数学年刊. A辑, Chinese Annals of Mathematics, Ser. A], V28, P71
[20]   Uniform decay rates for nonlinear viscoelastic Marguerre-von Karman equations [J].
Li, Fushan ;
Bai, Yuzhen .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (02) :522-535