Limit behavior of the solution to nonlinear viscoelastic Marguerre-von Karman shallow shell system

被引:33
作者
Li, Fushan [1 ]
机构
[1] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Viscoelastic; Shallow shell; Plate; UNIFORM DECAY-RATES; BOUNDARY FEEDBACK; EQUATIONS; STABILIZATION; PLATE; DISSIPATION; MEMORY;
D O I
10.1016/j.jde.2010.05.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the nonlinear full Marguerre-von Karman shallow shell system with a dissipative mechanism of memory type. The model depends on one small parameter. The main purpose of this paper is to show that as the parameter approaches zero, the limiting system is the well-known full von Karman model with memory for thin plates. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:1241 / 1257
页数:17
相关论文
共 26 条
[1]  
[Anonymous], 1986, Annali di Matematica Pura ed Applicata, DOI [DOI 10.1007/BF01762360.MR916688, DOI 10.1007/BF01762360]
[2]  
[Anonymous], 1997, STUD MATH APPL
[3]  
Banica G. A., 1999, Asymptotic Analysis, V19, P35
[4]   LOCAL EXPONENTIAL STABILIZATION FOR A NONLINEARLY PERTURBED VONKARMAN PLATE [J].
BRADLEY, M ;
LASIECKA, I .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (04) :333-343
[5]  
Ciarlet P. G., 1986, COMPUTATIONAL MECHAN, V1, P177
[6]  
Horn M.A., 1994, Diff. Integral Equ., V7, P885
[7]   GLOBAL STABILIZATION OF A DYNAMIC VON KARMAN PLATE WITH NONLINEAR BOUNDARY FEEDBACK [J].
HORN, MA ;
LASIECKA, I .
APPLIED MATHEMATICS AND OPTIMIZATION, 1995, 31 (01) :57-84
[8]  
IOSIFESCU OA, 1995, C R ACAD SCI PARIS 1, V321, P1389
[9]  
KAVIAN O, 1993, CR ACAD SCI I-MATH, V317, P1137
[10]   ON THE DIRICHLET PROBLEM FOR THE MARGUERRE EQUATIONS [J].
KESAVAN, S ;
SRIKANTH, PN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (02) :209-216