Height-diameter models with stochastic differential equations and mixed-effects parameters

被引:13
作者
Rupsys, Petras [1 ]
机构
[1] Aleksandras Stulginskis Univ, Inst Forest Management & Wood Sci, LT-53361 Kaunas, Lithuania
关键词
Conditional density function; Diameter; Height; Stochastic differential equation; Threshold parameter; TREE DIAMETER; GROWTH; STANDS;
D O I
10.1007/s10310-014-0454-1
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Height-diameter modeling is most often performed using non-linear regression models based on ordinary differential equations. In this study, new models of tree height dynamics involving a stochastic differential equation and mixed-effects parameters are examined. We use a stochastic differential equation to describe the dynamics of the height of an individual tree. The first model is defined by a Gompertz shape stochastic differential equation. The second Gompertz shape stochastic differential equation model with a threshold parameter can be considered an extension of the three-parameter stochastic Gompertz process through the addition of a fourth parameter. The parameters are estimated through discrete sampling of diameter and height and through the maximum likelihood procedure. We use data from tropical Atlantic moist forest trees to validate our modeling technique. The results indicate that our models are able to capture tree height behavior quite accurately. All the results are implemented in the MAPLE symbolic algebra system.
引用
收藏
页码:9 / 17
页数:9
相关论文
共 26 条
[1]  
Calama R, 2004, CAN J FOREST RES, V34, P150, DOI [10.1139/x03-199, 10.1139/X03-199]
[2]  
Scaranello MAD, 2012, SCI AGR, V69, P26, DOI 10.1590/S0103-90162012000100005
[3]   A STOCHASTIC DIFFERENTIAL-EQUATION MODEL FOR THE HEIGHT GROWTH OF FOREST STANDS [J].
GARCIA, O .
BIOMETRICS, 1983, 39 (04) :1059-1072
[4]  
Gompertz B., 1825, Philos Trans R Soc Lond, V115, P513, DOI [10.1098/rstl.1825.0026, DOI 10.1098/RSTL.1825.0026]
[5]   A new stochastic Gompertz diffusion process with threshold parameter:: Computational aspects and applications [J].
Gutierrez, R. ;
Gutierrez-Sanchez, R. ;
Nafidi, A. ;
Ramos, E. .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 183 (02) :738-747
[6]   Aboveground biomass equations for individual trees of Cryptomeria japonica, Chamaecyparis obtusa and Larix kaempferi in Japan [J].
Hosoda, Kazuo ;
Iehara, Toshiro .
JOURNAL OF FOREST RESEARCH, 2010, 15 (05) :299-306
[7]  
Ito K., 1942, Jap. J. Math, V18, P261, DOI DOI 10.4099/JJM1924.18.0_261
[8]   Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia [J].
Kenzo, Tanaka ;
Furutani, Ryo ;
Hattori, Daisuke ;
Kendawang, Joseph Jawa ;
Tanaka, Sota ;
Sakurai, Katsutoshi ;
Ninomiya, Ikuo .
JOURNAL OF FOREST RESEARCH, 2009, 14 (06) :365-372
[9]  
Liang WM, 2000, J FOR RES, V13, P75
[10]  
Lumbres RIC, 2012, ASIA LIFE SCI, V21, P455