Anomalous in situ Activation of Carbon-Supported Ni2P Nanoparticles for Oxygen Evolving Electrocatalysis in Alkaline Media

被引:30
作者
Chung, Young-Hoon [1 ,2 ]
Jang, Injoon [1 ,5 ]
Jang, Jue-Hyuk [1 ,3 ]
Park, Hyun S. [1 ]
Ham, Hyung Chul [1 ]
Jang, Jong Hyun [1 ,3 ]
Lee, Yong-Kul [4 ]
Yoo, Sung Jong [1 ,6 ]
机构
[1] Korea Inst Sci & Technol, Fuel Cell Res Ctr, Seoul 02792, South Korea
[2] KIPO, Appl Mat Examinat Div, Daejeon 35208, South Korea
[3] Korea Univ, Green Sch, Seoul 02841, South Korea
[4] Dankook Univ, Dept Chem Engn, Yongin 16890, South Korea
[5] SNU, Sch Chem & Biol Engn, Seoul 08826, South Korea
[6] Korea Univ Sci & Technol, KIST Sch, Div Energy & Environm Technol, Daejeon 34113, South Korea
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
NICKEL-HYDROXIDE; HIGH-PERFORMANCE; WATER OXIDATION; CATALYTIC-ACTIVITY; EVOLUTION; ELECTRODES; DIFFRACTION; STABILITY;
D O I
10.1038/s41598-017-08296-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrochemical water splitting is one of the most promising systems by which to store energy produced from sustainable sources, such as solar and wind energy. Designing robust and stable electrocatalysts is urgently needed because of the relatively sluggish kinetics of the anodic reaction, i.e. the oxygen evolution reaction (OER). In this study, we investigate the anomalous in situ activation behaviour of carbon-supported Ni2P nanoparticles (Ni2P/C) during OER catalysis in alkaline media. The activated Ni2P/C shows an exceptionally high activity and stability under OER conditions in which the overpotential needed to achieve 10 mA cm(-2) was reduced from approximately 350 mV to approximately 300 mV after 8,000 cyclic voltammetric scans. In situ and ex situ characterizations indicate that the activity enhancement of Ni2P catalysts is due to a favourable phase transformation of the Ni centre to beta-NiOOH, including increases in the active area induced by structural deformation under the OER conditions. These findings provide new insights towards designing transition metal/phosphide-based materials for an efficient water splitting catalyst.
引用
收藏
页数:8
相关论文
共 44 条
  • [1] In situ neutron powder diffraction of a nickel hydroxide electrode
    Bardé, F
    Palacin, MR
    Chabre, Y
    Isnard, O
    Tarascon, JM
    [J]. CHEMISTRY OF MATERIALS, 2004, 16 (20) : 3936 - 3948
  • [2] STUDIES CONCERNING CHARGED NICKEL-HYDROXIDE ELECTRODES .1. MEASUREMENT OF REVERSIBLE POTENTIALS
    BARNARD, R
    RANDELL, CF
    TYE, FL
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 1980, 10 (01) : 109 - 125
  • [3] Structure-Activity Correlations in a Nickel-Borate Oxygen Evolution Catalyst
    Bediako, D. Kwabena
    Lassalle-Kaiser, Benedikt
    Surendranath, Yogesh
    Yano, Junko
    Yachandra, Vittal K.
    Nocera, Daniel G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (15) : 6801 - 6809
  • [4] Bode H., 1966, Electrochim. Acta, V11, P1079, DOI [10.1016/0013-4686(66)80045-2, DOI 10.1016/0013-4686(66)80045-2]
  • [5] Solar Energy Supply and Storage for the Legacy and Non legacy Worlds
    Cook, Timothy R.
    Dogutan, Dilek K.
    Reece, Steven Y.
    Surendranath, Yogesh
    Teets, Thomas S.
    Nocera, Daniel G.
    [J]. CHEMICAL REVIEWS, 2010, 110 (11) : 6474 - 6502
  • [6] X-ray diffraction and micro-Raman spectroscopy analysis of new nickel hydroxide obtained by electrodialysis
    Deabate, S
    Fourgeot, F
    Henn, F
    [J]. JOURNAL OF POWER SOURCES, 2000, 87 (1-2) : 125 - 136
  • [7] CHARACTERIZATION OF REDOX STATES OF NICKEL-HYDROXIDE FILM ELECTRODES BY INSITU SURFACE RAMAN-SPECTROSCOPY
    DESILVESTRO, J
    CORRIGAN, DA
    WEAVER, MJ
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (04) : 885 - 892
  • [8] Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting
    Friebel, Daniel
    Louie, Mary W.
    Bajdich, Michal
    Sanwald, Kai E.
    Cai, Yun
    Wise, Anna M.
    Cheng, Mu-Jeng
    Sokaras, Dimosthenis
    Weng, Tsu-Chien
    Alonso-Mori, Roberto
    Davis, Ryan C.
    Bargar, John R.
    Norskov, Jens K.
    Nilsson, Anders
    Bell, Alexis T.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) : 1305 - 1313
  • [9] Nitrogen-Doped Graphene Supported CoSe2 Nanobelt Composite Catalyst for Efficient Water Oxidation
    Gao, Min-Rui
    Cao, Xuan
    Gao, Qiang
    Xu, Yun-Fei
    Zheng, Ya-Rong
    Jiang, Jun
    Yu, Shu-Hong
    [J]. ACS NANO, 2014, 8 (04) : 3970 - 3978
  • [10] Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst
    Gao, Minrui
    Sheng, Wenchao
    Zhuang, Zhongbin
    Fang, Qianrong
    Gu, Shuang
    Jiang, Jun
    Yan, Yushan
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (19) : 7077 - 7084