Nontrivial solution for a class of semilinear biharmonic equation involving critical exponents

被引:18
作者
Yao, Yangxin [1 ]
Wang, Rongxin [1 ]
Shen, Yaotian [1 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
关键词
biharmonic equation; critical exponent; singular term; nontrivial solution; Sobolev-Hardy inequality;
D O I
10.1016/S0252-9602(07)60050-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, the authors prove the existence and the nonexistence of nontrivial solutions for a semilinear biharmonic equation involving critical exponent by virtue of Mountain Pass Lemma and Sobolev-Hardy inequality.
引用
收藏
页码:509 / 514
页数:6
相关论文
共 8 条
[1]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[2]  
DOLD JW, 1998, ANN SCUOLA NORM SUP, V25, P663
[3]   CRITICAL EXPONENTS, CRITICAL DIMENSIONS AND THE BIHARMONIC OPERATOR [J].
EDMUNDS, DE ;
FORTUNATO, D ;
JANNELLI, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (03) :269-289
[4]   Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents [J].
Ghoussoub, N ;
Yuan, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5703-5743
[5]  
[康东升 Kang Dongsheng], 2003, [数学物理学报. A辑, Acta Mathematica Scientia], V23, P106
[6]   A RELLICH TYPE IDENTITY AND APPLICATIONS [J].
MITIDIERI, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (1-2) :125-151
[7]  
Xuan Benjin, 1999, Systems Science and Mathematical Science, V12, P59
[8]   On critical singular quasilinear elliptic problem when n = p [J].
Yao, YX ;
Shen, YT .
ACTA MATHEMATICA SCIENTIA, 2006, 26 (02) :209-219