Spectrum of the Jacobi tau approximation for the second derivative operator

被引:15
作者
Charalambides, Marios
Waleffe, Fabian [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
英国科研创新办公室;
关键词
Jacobi polynomials; Gegenbauer polynomials; stable polynomials; positive pairs; zeros of polynomials; spectral methods;
D O I
10.1137/060665907
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is proved that the eigenvalues of the Jacobi tau method for the second derivative operator with Dirichlet boundary conditions are real, negative, and distinct for a range of the Jacobi parameters. Special emphasis is placed on the symmetric case of the Gegenbauer tau method where the range of parameters included in the theorems can be merged and characteristic polynomials given by successive order approximations interlace. This includes the common Chebyshev and Legendre tau and Galerkin methods.
引用
收藏
页码:280 / 294
页数:15
相关论文
共 13 条
[1]  
[Anonymous], 1964, Handbook of mathematical functions
[2]  
Boyd JP., 2001, CHEBYSHEV FOURIER SP
[3]  
Canuto C., 2012, Spectral Methods: Fundamentals in Single Domains
[4]  
CHARALAMBIDES M, 2006, SPECTRUM JACOBI TAU
[5]   A new property of a class of Jacobi polynomials [J].
Csordas, G ;
Charalambides, M ;
Waleffe, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) :3551-3560
[6]   On the coefficients of differentiated expansions and derivatives of Jacobi polynomials [J].
Doha, EH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (15) :3467-3478
[7]   THE SPECTRUM OF THE TSCHEBYSCHEV COLLOCATION OPERATOR FOR THE HEAT-EQUATION [J].
GOTTLIEB, D ;
LUSTMAN, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (05) :909-921
[8]  
GOTTLIEB D, 1981, MATH COMPUT, V36, P107, DOI 10.1090/S0025-5718-1981-0595045-1
[9]  
Gottlieb D., 1977, NUMERICAL ANAL SPECT
[10]   Hermite-Biehler, Routh-Hurwitz, and total positivity [J].
Holtz, O .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 372 (SUPPL.) :105-110