The i-motif is a four-stranded structure built by intercalation in head-to-tail orientation of two parallel duplexes associated by hemi-protonated C.C+ pairs. Using NMR methods, we investigated the structure, the base-pair opening kinetics and the internal motions of three i-motif tetramers: [d(5mCCTCnTCC)](4) (n = 1, 2, 3). These tetramers cannot accommodate the intercalation of two T.T pairs in face-to-face orientation. They are built by intercalation of two symmetrical duplexes whose contacting T3/TM thymidine bases (M = 5, 6, 7) are either base-paired or unstacked. The arrangement of the unstacked/paired thymidine bases of the two T/T groups results in the formation of two different conformations. One, fully symmetric, whose thymidine bases T3 and TM are unstacked and base-paired respectively. The other is the asymmetric assembly of two duplexes: one where both thymidine bases are unstacked and the other with two T.T pairs. The proportion of the symmetric conformer increases from a value beyond the detection threshold for n = 1, to 19% for n = 2 and up to more than 95% for n = 3. The exchange cross-peaks connecting together the intercalated duplexes of [d(5mCCTCTCC)](4) and [d(5mCCTCCTCC)](4) reveal a structural inter-conversion induced by the simultaneous opening/closing of the contacting T3/TM thymidine bases. In [d(5mCCTCCTCC)](4) the motion of the T3/T6 groups triggers the interconversion of the symmetric and asymmetric conformations. In [d(5mCCTCTCC)](4) the intercalated duplexes exchange their structures in an apparently concerted motion, suggesting the simultaneous opening/closing of two distant T3/T5* and T5/T3* switching groups. The spectrum of [d(5mCCTCCCTCC)](4) is fully symmetric and, for this reason, its spectrum gives no indication for duplex interconversion. Nevertheless, the imino proton exchange kinetics argues for a switching motion of the T3/T7 group. Duplex interconversion is not detectable in that case, due to the tetramer symmetry. The origin of the structural conflict hindering the intercalation of two T.T pairs into the i-motif is discussed. (C) 2003 Elsevier Ltd. All rights reserved.