Umemura polynomials for the Painleve V equation

被引:22
作者
Noumi, M [1 ]
Yamada, Y [1 ]
机构
[1] Kobe Univ, Dept Math, Kobe, Hyogo 6578501, Japan
关键词
Painleve equations; rational solutions; Schur functions;
D O I
10.1016/S0375-9601(98)00625-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give an explicit formula for the one-parameter family of special polynomials associated with the fifth Painleve equation (Pv) in terms of the Schur functions. Remarkably, our formulae coincide with those for the discrete Painleve II equation (dP(II)), where the roles of the independent variable and the parameter are exchanged. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:65 / 69
页数:5
相关论文
共 9 条
[1]   Determinant structure of the rational solutions for the Painleve II equation [J].
Kajiwara, K ;
Ohta, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (09) :4693-4704
[2]   Rational solutions for the discrete Painleve II equation [J].
Kajiwara, K ;
Yamamoto, K ;
Ohta, Y .
PHYSICS LETTERS A, 1997, 232 (3-4) :189-199
[3]  
KAJIWARA K, SOLVINT9707011
[4]  
NOUMI M, IN PRESS NAGOYA MATH
[5]  
NOUMI M, 1997, SPECIAL POLYNOMIALS, V2
[6]   STUDIES ON THE PAINLEVE EQUATIONS .3. 2ND AND 4TH PAINLEVE EQUATIONS, PII AND PIV [J].
OKAMOTO, K .
MATHEMATISCHE ANNALEN, 1986, 275 (02) :221-255
[7]   BILINEAR DISCRETE PAINLEVE-II AND ITS PARTICULAR SOLUTIONS [J].
SATSUMA, J ;
KAJIWARA, K ;
GRAMMATICOS, B ;
HIETARINTA, J ;
RAMANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (12) :3541-3548
[8]  
UMEMURA H, 1996, SPECIAL POLYNOMIALS, V1
[9]  
Vorob'ev AP., 1965, DIFF EQ, V1, P58