Lie Symmetry Analysis of Burgers Equation and the Euler Equation on a Time Scale

被引:5
作者
Liu, Mingshuo [1 ]
Dong, Huanhe [1 ]
Fang, Yong [1 ]
Zhang, Yong [1 ]
机构
[1] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 01期
基金
中国国家自然科学基金;
关键词
lie symmetry analysis; time scale; Burgers equation; Euler equation with Coriolis force; traffic flow; group invariant solution; BOUNDARY-VALUE-PROBLEMS; DYNAMIC EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE; BOUNDEDNESS; REDUCTIONS; UNIQUENESS; SYSTEMS;
D O I
10.3390/sym12010010
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As a powerful tool that can be used to solve both continuous and discrete equations, the Lie symmetry analysis of dynamical systems on a time scale is investigated. Applying the method to the Burgers equation and Euler equation, we get the symmetry of the equation and single parameter groups on a time scale. Some group invariant solutions in explicit form for the traffic flow model simulated by a Burgers equation and Euler equation with a Coriolis force on a time scale are studied.
引用
收藏
页数:15
相关论文
共 29 条
[1]   Multivalued essential maps of approximable and acyclic type [J].
Agarwal, RP ;
O'Regan, D .
APPLIED MATHEMATICS LETTERS, 2000, 13 (01) :7-11
[2]   Existence of solutions to boundary value problems for dynamic systems on time scales [J].
Amster, P ;
Rogers, C ;
Tisdell, CC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (02) :565-577
[3]   Lie symmetry analysis, exact solutions and conservation laws for the time fractional Caudrey-Dodd-Gibbon-Sawada-Kotera equation [J].
Baleanu, Dumitru ;
Inc, Mustafa ;
Yusuf, Abdullahi ;
Aliyu, Aliyu Isa .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 :222-234
[4]   Fractal Burgers equations [J].
Biler, P ;
Funaki, T ;
Woyczynski, WA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 148 (01) :9-46
[5]  
Bohner M., 2012, Dynamic Equations on Time Scales: An Introduction with Applications
[6]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales, DOI DOI 10.1007/978-0-8176-8230-9
[7]  
Burgers JM, 1974, NONLINEAR DIFFUSION, DOI [10.1007/978-94-010-1745-9, DOI 10.1007/978-94-010-1745-9]
[8]   Double positive solutions of boundary value problems for p-Laplacian impulsive functional dynamic equations on time scales [J].
Chen, Haibo ;
Wang, Haihua ;
Zhang, Qi ;
Zhou, Tiejun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (10) :1473-1480
[9]   Uniqueness implies existence on time scales [J].
Chyan, CJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (01) :359-365
[10]   Boundedness of solutions of measure differential equations and dynamic equations on time scales [J].
Federson, M. ;
Grau, R. ;
Mesquita, J. G. ;
Toon, E. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (01) :26-56