Nanocrystalline Ag-W alloys lose stability upon solute desegregation from grain boundaries

被引:49
作者
Jiao, Z. B. [1 ,2 ]
Schuh, C. A. [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Nanocrystalline alloys; Ag-W alloys; Grain boundary segregation; Stability; THERMAL-STABILITY; THIN-FILMS; ATOM-PROBE; PHASE-SEPARATION; SEGREGATION; GROWTH; AL; STABILIZATION; IRON; NI;
D O I
10.1016/j.actamat.2018.09.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Alloying has proven an enabling strategy to stabilize nanocrystalline materials against grain growth, especially in cases where the solute segregates to grain boundaries and lowers their energy. Among such materials reported to date, most all are stable up to some temperature at which second phases precipitate, depleting solute from the boundaries. Here in contrast we present a system that loses stability by thermal desegregation of solute back into solution in the grains. Specifically, we explore minor additions of W (0, 03, 1.3, and 1.9 at.%) on the grain structure, grain boundary segregation, and thermal stability of nanocrystalline Ag using transmission electron microscopy and atom probe tomography. W is shown to segregate at grain boundaries in electrodeposited nanocrystalline Ag, pushing the onset temperature for grain growth from similar to 200 degrees C up to similar to 300 degrees C. Upon such heating we observe the dissolution of W off the grain boundaries and back into the FCC host lattice, at a temperature in line with thermodynamic expectations on the basis of the segregation isotherm. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:194 / 206
页数:13
相关论文
共 54 条
[1]  
ABE YR, 1992, MATER SCI FORUM, V88, P513, DOI 10.4028/www.scientific.net/MSF.88-90.513
[2]   Influence of the substrate bias on the size and thermal stability of grains in magnetron-sputtered nanocrystalline Ag films [J].
Almtoft, KP ;
Bottiger, J ;
Chevallier, J ;
Schell, N ;
Martins, RMS .
JOURNAL OF MATERIALS RESEARCH, 2005, 20 (04) :1071-1080
[3]   The stabilization of nanocrystalline copper by zirconium [J].
Atwater, Mark A. ;
Scattergood, Ronald O. ;
Koch, Carl C. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 559 :250-256
[4]   Atom probe study of grain boundary segregation in technically pure molybdenum [J].
Babinsky, K. ;
Weidow, J. ;
Knabl, W. ;
Lorich, A. ;
Leitner, H. ;
Primig, S. .
MATERIALS CHARACTERIZATION, 2014, 87 :95-103
[5]  
Bakker H., 1998, ENTHALPIES ALLOYS MI
[6]   Segregation inhibited grain coarsening in nanocrystalline alloys [J].
Beke, DL ;
Cserháti, C ;
Szabó, IA .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (09) :4996-5001
[7]   Phase transition and mechanical properties of tungsten nanomaterials from molecular dynamic simulation [J].
Chen, L. ;
Fan, J. L. ;
Gong, H. R. .
JOURNAL OF NANOPARTICLE RESEARCH, 2017, 19 (03)
[8]   Thermal Stability and Tensile Properties of Electrodeposited Cu-Bi Alloy [J].
Chen, Xianhua ;
Mao, Jianjun .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2011, 20 (03) :481-486
[9]   Nanocrystalline Fe-C alloys produced by ball milling of iron and graphite [J].
Chen, Y. Z. ;
Herz, A. ;
Li, Y. J. ;
Borchers, C. ;
Choi, P. ;
Raabe, D. ;
Kirchheim, R. .
ACTA MATERIALIA, 2013, 61 (09) :3172-3185
[10]   Thermal stability of electrodeposited nanocrystalline Co-1.1at.%P [J].
Choi, P ;
da Silva, M ;
Klement, U ;
Al-Kassab, T ;
Kirchheim, R .
ACTA MATERIALIA, 2005, 53 (16) :4473-4481