Input of atomic layer deposition for solid oxide fuel cell applications

被引:57
作者
Cassir, Michel [1 ]
Ringuede, Armelle [1 ]
Niinisto, Lauri [2 ,3 ]
机构
[1] Chim ParisTech, Lab Electrochim Chim Interfaces & Modelisat Energ, UMR CNRS 7575, F-75231 Paris 05, France
[2] Aalto Univ, Inorgan & Analyt Chem Lab, FI-02015 Espoo, Finland
[3] Picosun Oy, FI-02150 Espoo, Finland
关键词
YTTRIA-STABILIZED ZIRCONIA; ZRO2; THIN-FILMS; BETA-DIKETONATE; ELECTRICAL-PROPERTIES; LOW-TEMPERATURE; HYDROGEN-PRODUCTION; ELECTRODE MATERIALS; RECENT PROGRESS; DOPED LAGAO3; GROWTH;
D O I
10.1039/c0jm00590h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of a new generation of solid oxide fuel cells (SOFCs) operating at lower temperatures with competitive performances requires the use of high-quality thin layers, either as electrolytes, electrodes or interlayers, such as catalysts, diffusion barriers, bond or protective layers. Atomic layer deposition (ALD) is a sequential chemical vapour deposition (CVD) technique allowing processing of one mono-atomic layer after another, conformal, adherent and homogeneous nano-scaled films which are often crystalline as-deposited without the need of high-temperature annealing treatments. Moreover, the scalability of ALD offers an important prospect for industrial applications. In this work, the literature dealing with ALD applied to SOFCs is thoroughly analysed, showing the present achievements as well as the numerous advantages of this technique. New developments for the future are currently in progress extending the potential use of ALD to other high-temperature devices such as proton electrolyte fuel cells, high-temperature water electrolysis, HTWE (with reversed SOFC-type systems) and molten carbonate fuel cells (MCFCs).
引用
收藏
页码:8987 / 8993
页数:7
相关论文
共 71 条
[11]   From macro- to micro-single chamber solid oxide fuel cells [J].
Buergler, B. E. ;
Ochsner, M. ;
Vuillemin, S. ;
Gauckler, L. J. .
JOURNAL OF POWER SOURCES, 2007, 171 (02) :310-320
[12]   Synthesis of ZrO2 thin films by atomic layer deposition:: growth kinetics, structural and electrical properties [J].
Cassir, M ;
Goubin, F ;
Bernay, C ;
Vernoux, P ;
Lincot, D .
APPLIED SURFACE SCIENCE, 2002, 193 (1-4) :120-128
[13]  
CASSIR M, 2002, Patent No. 020537981
[14]   Surface Modification of Yttria-Stabilized Zirconia Electrolyte by Atomic Layer Deposition [J].
Chao, Cheng-Chieh ;
Kim, Young Beom ;
Prinz, Fritz B. .
NANO LETTERS, 2009, 9 (10) :3626-3628
[15]   Study of transition metal oxide doped LaGaO3 as electrode materials for LSGM-based solid oxide fuel cells [J].
Chen, FL ;
Liu, ML .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 1998, 3 (01) :7-14
[16]   Property change of a LaNi0.6Fe0.4O3 cathode in the initial current loading process and the influence of a ceria interlayer [J].
Chiba, Reiichi ;
Tabata, Yoshitaka ;
Komatsu, Takeshi ;
Orui, Himeko ;
Nozawa, Kazuhiko ;
Arakawa, Masayasu ;
Arai, Hajime .
SOLID STATE IONICS, 2008, 178 (31-32) :1701-1709
[17]   Nanoparticulate cathode thin films with high electrochemical activity for low temperature SOFC applications [J].
Darbandi, Azad J. ;
Hahn, Horst .
SOLID STATE IONICS, 2009, 180 (26-27) :1379-1387
[18]   Atomic layer deposition of Ga2O3 films from a dialkylamido-based precursor [J].
Dezelah, CL ;
Niinistö, J ;
Arstila, K ;
Niinistö, L ;
Winter, CH .
CHEMISTRY OF MATERIALS, 2006, 18 (02) :471-475
[19]   IONIC AND ELECTRONIC CONDUCTIVITIES OF HOMOGENEOUS AND HETEROGENEOUS MATERIALS IN THE SYSTEM ZRO2-IN2O3 [J].
GAUCKLER, LJ ;
SASAKI, K .
SOLID STATE IONICS, 1995, 75 :203-210
[20]   Atomic layer deposition of Y2O3/ZrO2 nanolaminates -: A route to ultrathin solid-state electrolyte membranes [J].
Ginestra, Cynthia N. ;
Sreenivasan, Raghavasimhan ;
Karthikeyan, Annamalai ;
Ramanathan, Shriram ;
McIntyre, Paul C. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (10) :B161-B165