Quantum State Tomography with Conditional Generative Adversarial Networks

被引:94
作者
Ahmed, Shahnawaz [1 ]
Sanchez Munoz, Carlos [2 ,3 ]
Nori, Franco [4 ,5 ]
Kockum, Anton Frisk [1 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
[2] Univ Autonoma Madrid, Dept Fis Teor Mat Condensada, Madrid 28049, Spain
[3] Univ Autonoma Madrid, Condensed Matter Phys Ctr IFIMAC, Madrid 28049, Spain
[4] RIKEN Cluster Pioneering Res, Theoret Quantum Phys Lab, Wako, Saitama 3510198, Japan
[5] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
欧盟地平线“2020”; 日本科学技术振兴机构; 日本学术振兴会;
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; PHYSICS; RECONSTRUCTION; DYNAMICS; QUTIP;
D O I
10.1103/PhysRevLett.127.140502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state tomography (QST) is a challenging task in intermediate-scale quantum devices. Here, we apply conditional generative adversarial networks (CGANs) to QST. In the CGAN framework, two dueling neural networks, a generator and a discriminator, learn multimodal models from data. We augment a CGAN with custom neural-network layers that enable conversion of output from any standard neural network into a physical density matrix. To reconstruct the density matrix, the generator and discriminator networks train each other on data using standard gradient-based methods. We demonstrate that our QST-CGAN reconstructs optical quantum states with high fidelity, using orders of magnitude fewer iterative steps, and less data, than both accelerated projected-gradient-based and iterative maximum-likelihood estimation. We also show that the QST-CGAN can reconstruct a quantum state in a single evaluation of the generator network if it has been pretrained on similar quantum states.
引用
收藏
页数:8
相关论文
共 108 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
Ahmed S., 2021, PHYS REV RES, V3
[3]  
[Anonymous], **DATA OBJECT**, DOI 10.5281/zenodo.5105469
[4]  
[Anonymous], 2018, Advances in Neural Information Processing Systems
[5]  
[Anonymous], 2014, arXiv
[6]   Analogue quantum chemistry simulation [J].
Argueello-Luengo, Javier ;
Gonzalez-Tudela, Alejandro ;
Shi, Tao ;
Zoller, Peter ;
Cirac, J. Ignacio .
NATURE, 2019, 574 (7777) :215-+
[7]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[8]   Ultrasensitive magnetic field detection using a single artificial atom [J].
Bal, M. ;
Deng, C. ;
Orgiazzi, J. -L. ;
Ong, F. R. ;
Lupascu, A. .
NATURE COMMUNICATIONS, 2012, 3
[9]   Maximum-likelihood estimation of the density matrix [J].
Banaszek, K ;
D'Ariano, GM ;
Paris, MGA ;
Sacchi, MF .
PHYSICAL REVIEW A, 2000, 61 (01) :4
[10]   Microwave quantum illumination using a digital receiver [J].
Barzanjeh, S. ;
Pirandola, S. ;
Vitali, D. ;
Fink, J. M. .
SCIENCE ADVANCES, 2020, 6 (19)